The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneve...The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneven distribution of cooling water in parallel pipes based on hydrodynamic principles,discusses the feasible methods for the improvement of BF cooling intensity,and reviews the pre-paration process,performance,and damage characteristics of three key equipment pieces:coolers,tuyeres,and hearth refractories.Fur-thermoere,to attain better control of these critical components under high-temperature working conditions,we propose the application of optimized technologies,such as BF operation and maintenance technology,self-repair technology,and full-lifecycle management techno-logy.Finally,we propose further researches on safety assessments and predictions for key BF equipment under new operating conditions.展开更多
The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,...The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed.The data on raw and fuel materials,process op-eration,smelting state,and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed.A novel method for the delay analysis of furnace heat indicators was established.The extracted delay variables were found to play an important role in modeling.The method that combined the genetic algorithm and stacking efficiently im-proved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model.The hit ratio for predicting the temperature of hot metal in the error range of±10℃ was 92.4%,and that for the chemical heat of hot metal in the error range of±0.1wt%was 93.3%.On the basis of the furnace heat prediction model and expert experience,a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels.These sugges-tions were highly accepted by BF operators.Finally,the comprehensive and dynamic model proposed in this work was successfully ap-plied in a practical BF system.It improved the BF temperature level remarkably,increasing the furnace temperature stability rate from 54.9%to 84.9%.This improvement achieved considerable economic benefits.展开更多
Hydrogen-enriched blast furnace ironmaking has become an essential route to reduce CO_(2)emissions in the ironmaking process.However,hydrogen-enriched reduction produces large amounts of H_(2)O,which places new demand...Hydrogen-enriched blast furnace ironmaking has become an essential route to reduce CO_(2)emissions in the ironmaking process.However,hydrogen-enriched reduction produces large amounts of H_(2)O,which places new demands on coke quality in a blast furnace.In a hydrogen-rich blast furnace,the presence of H_(2)O promotes the solution loss reaction.This result improves the reactivity of coke,which is 20%-30%higher in a pure H_(2)O atmosphere than in a pure CO_(2)atmosphere.The activation energy range is 110-300 kJ/mol between coke and CO_(2)and 80-170 kJ/mol between coke and H_(2)O.CO_(2)and H_(2)O are shown to have different effects on coke degradation mechanisms.This review provides a comprehensive overview of the effect of H_(2)O on the structure and properties of coke.By exploring the interactions between H_(2)O and coke,several unresolved issues in the field requiring further research were identified.This review aims to provide valuable insights into coke behavior in hydrogen-rich environments and promote the further development of hydrogen-rich blast furnace ironmaking processes.展开更多
The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile con...The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion.展开更多
To realize the resource utilization of the valuable metals in the titanium-containing blast furnace slag,the process route of “hydrochloric acid leaching-electrolysis-carbonization and carbon dioxide capture-preparat...To realize the resource utilization of the valuable metals in the titanium-containing blast furnace slag,the process route of “hydrochloric acid leaching-electrolysis-carbonization and carbon dioxide capture-preparation of calcium carbonate” was proposed.In this study,the influences of process conditions on the leaching rates of calcium,magnesium,aluminum,and iron and the phases of the leaching residue were investigated for the leaching process.The experimental results show that the HCl solution could selectively leach the elements from the titanium-containing blast furnace slag.The better leaching conditions are the HCl solution concentration of 4 mol/L,the leaching time of 30 min,the ratio of liquid volume to solid gas of 10 mL/g,and the stirring paddle speed of 300 r/min.Under the conditions,the leaching rates of calcium,magnesium,aluminum,and iron can reach 85.87%,73.41%,81.35%,and 59.08%,and the leaching rate of titanium is 10.71%.The iron and the aluminum are removed from the leachate to obtain iron-aluminum water purification agents,and the magnesium is removed from the leachate to obtain magnesium hydroxide.The leaching residue phase is dominated by perovskite,followed by magnesium silicate and tricalcium aluminate,and the titaniumrich material could be obtained from the leaching residue by desiliconization.展开更多
Blast furnace(BF)burden surface contains the most abundant,intuitive and credible smelting information and acquiring high-definition and high-brightness optical images of which is essential to realize precise material...Blast furnace(BF)burden surface contains the most abundant,intuitive and credible smelting information and acquiring high-definition and high-brightness optical images of which is essential to realize precise material charging control,optimize gas flow distribution and improve ironmaking efficiency.It has been challengeable to obtain high-quality optical burden surface images under high-temperature,high-dust,and extremelydim(less than 0.001 Lux)environment.Based on a novel endoscopic sensing detection idea,a reverse telephoto structure starlight imaging system with large field of view and large aperture is designed.Combined with a water-air dual cooling intelligent self-maintenance protection device and the imaging system,a starlight high-temperature industrial endoscope is developed to obtain clear optical burden surface images stably under the harsh environment.Based on an endoscope imaging area model,a material flow trajectory model and a gas-dust coupling distribution model,an optimal installation position and posture configuration method for the endoscope is proposed,which maximizes the effective imaging area and ensures large-area,safe and stable imaging of the device in a confined space.Industrial experiments and applications indicate that the proposed method obtains clear and reliable large-area optical burden surface images and reveals new BF conditions,providing key data support for green iron smelting.展开更多
Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save ...Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save energy and water in the slag flushing process of blast furnaces,an ideal comprehensive cascade utilization system scheme for annual recovery of waste heat is proposed.Based on the measured waste heat data of a steel plant,design calculations are carried out to further analyze the economic feasibility of the new scheme and provide reference for its promotion and application.展开更多
A blast furnace slag zeolite(BFSZ)material was successfully synthesized from BFS by alkaline fusion and hydrothermal treatment.Via the analyses of XRD,FT-IR,FE-SEM,XRF,CEC and BET surface area measurement,when zeolite...A blast furnace slag zeolite(BFSZ)material was successfully synthesized from BFS by alkaline fusion and hydrothermal treatment.Via the analyses of XRD,FT-IR,FE-SEM,XRF,CEC and BET surface area measurement,when zeolite was synthesized at a crystallization temperature of 100℃with initial Si/Al ratio of 1:1,the main composition in the product is Na-A zeolite.Under the above conditions,the BFSZ was synthesized with CEC of 3.06 meq/g and maximum BET surface area of 37.55 m^(2)·g^(-1).Moreover,the incorporating of BFS-derived minor metals(such as Mg,Fe,and Ca)are found to be of little importance for the synthesis of BFSZ.Thus the obtained BFSZ material has a great adsorption performance for removing Mn^(2+),Cu^(2+),and NH_(4)^(+)ions diluted in water,owing to the higher CEC.展开更多
Due to the problems of few fault samples and large data fluctuations in the blast furnace(BF)ironmaking process,some transfer learning-based fault diagnosis methods are proposed.The vast majority of such methods perfo...Due to the problems of few fault samples and large data fluctuations in the blast furnace(BF)ironmaking process,some transfer learning-based fault diagnosis methods are proposed.The vast majority of such methods perform distribution adaptation by reducing the distance between data distributions and applying a classifier to generate pseudo-labels for self-training.However,since the training data is dominated by labeled source domain data,such classifiers tend to be weak classifiers in the target domain.In addition,the features generated after domain adaptation are likely to be at the decision boundary,resulting in a loss of classification performance.Hence,we propose a novel method called minimax entropy-based co-training(MMEC)that adversarially optimizes a transferable fault diagnosis model for the BF.The structure of MMEC includes a dual-view feature extractor,followed by two classifiers that compute the feature's cosine similarity to representative vector of each class.Knowledge transfer is achieved by alternately increasing and decreasing the entropy of unlabeled target samples with the classifier and the feature extractor,respectively.Transfer BF fault diagnosis experiments show that our method improves accuracy by about 5%over state-of-the-art methods.展开更多
Energy shortage and the emission of greenhouse gases have become a global problem of urgent concern.Therefore,there is an urgent need to develop a low carbon building material.Geopolymers have become a hot topic due t...Energy shortage and the emission of greenhouse gases have become a global problem of urgent concern.Therefore,there is an urgent need to develop a low carbon building material.Geopolymers have become a hot topic due to their environmental sustainability and the feasibility of immobilizing industrial waste.In this paper,steel slag(SS)fines were investigated as auxiliary materials of blast furnace slag(BFS)based geopolymer.The hydration heat properties,flowability,compressive strength,sorptivity coefficient,X-ray diffraction(XRD),and scanning electron microscopy(SEM)of the geopolymer pastes were determined.The results showed that the incorporation of SS weakened the reactivity of the BFS-based geopolymer paste and improved the flow values of the paste.The compressive strength of the geopolymer with 20%SS content reached 117 MPa at 28 d.The geopolymer specimens with high compressive strength showed a low sorptivity coefficient.The microscopic results showed that the addition of the appropriate amount of SS reduced the cracks,improved the density of the geopolymer,and produced a geopolymer composite with excellent mechanical properties.展开更多
Aluminous refractory materials with high alumina contents are widely used in the steel industry,and the higher the alumina content,the higher the working temperature.Properties such as high refractoriness and thermal ...Aluminous refractory materials with high alumina contents are widely used in the steel industry,and the higher the alumina content,the higher the working temperature.Properties such as high refractoriness and thermal shock resistance lead these refractory materials to be used as channel linings of blast furnaces,where they are exposed to the attack by slag,molten steel,working cycles and sudden temperature changes between 25℃(room temperature)and 1520℃(the temperature of molten pig iron).In this work,microstructural changes in post-mortem aluminous refractory bricks were investigated by apparent porosity,X-ray diffraction analysis(XRD),Fourier transform infrared spectroscopy(FTIR),scanning electron microscopy,and X-ray dispersion energy spectrometry(SEM/EDS).The results showed an increase in the apparent porosity and the bulk density and the presence of the phases mullite,sillimanite,alumina,and quartz in the post-mortem brick.Calcium and magnesium were not detected in the microstructure of the post-mortem brick,indicating that slags did not corrode these refractory materials.Therefore,the microstructural changes that occurred in the post-mortem bricks must be due to thermal cycling.In the X-ray diffraction(XRD)test,mullite,sillimanite,quartz,andα-alumina phases were identified.These results indicate that the aluminous refractory was obtained from sillimanite.In infrared spectroscopy(FTIR)it was possible to identify the vibration bands referring to the Si-O and Al-O bonds.The increase in the porosity is a result of cracks caused by work cycles at high temperatures and the temperature gradient to which the refractory was subjected during use.Through the micrograph it was possible to identify the presence of acicular mullite.The absence of magnesium and calcium in the microanalysis results by energy dispersed X-ray spectrometry(EDS)indicates that there was no infiltration by slag or liquid iron.These results indicate that the microstructural changes that occurred in the post-mortem aluminous refractory were of a thermal nature.展开更多
A SiC assembled large block for blast furnace tuyeres was prepared using silicon carbide particles(3-1 and 1-0.088 mm)and fine powder(<0.088 mm),silicon powder(<0.088 mm),industrial carbon black(N990),microsili...A SiC assembled large block for blast furnace tuyeres was prepared using silicon carbide particles(3-1 and 1-0.088 mm)and fine powder(<0.088 mm),silicon powder(<0.088 mm),industrial carbon black(N990),microsilica,ρ-Al_(2)O_(3) powder,etc.as raw materials.The developed block was compared with a silicon nitride bonded silicon carbide brick,a self-bonded silicon carbide brick and an imported self-bonded silicon carbide block to analyze and evaluate their service performance.The results show that:(1)in the 0-100 mm zone,the SiC large block mainly consists ofβ-SiC and nitrides such as O'-SiAlON,β-SiAlON,α-Si_(3)N_(4),and Si_(2)N_(2)O,the bulk density is 2.68-2.70 g·cm^(-3),the apparent porosity is 14%-15%,and the material structure is uniform;(2)in the 0-100 mm zone,β-SiC nano-whiskers intercalate with nitrides;with the depth increasing,the number of flocculentβ-SiC nano-whiskers increases,while the number of nitrides decreases;when the depth reaches 150 mm or more,the main bonding phases areβ-SiC and mullite;(3)compared with the reference products,the developed SiC large block has a good basic performance,and after alkali corrosion,the mass change rate is-0.1%,which is obviously superior to the imported self-bonded silicon carbide and the homemade silicon nitride bonded silicon carbide materials.展开更多
The article introduces the composition and working principle of the batching and weighing system underneath the blast furnace hearth.Besides,the shortcomings of the batching and weighing system during installation,deb...The article introduces the composition and working principle of the batching and weighing system underneath the blast furnace hearth.Besides,the shortcomings of the batching and weighing system during installation,debugging,and calibration,as well as the dynamic errors in the batching process are also analyzed.Corresponding solutions are then provided.展开更多
Sulfate-modified titanium dioxide-bearing blast furnace slag(STBBFS) photocatalysts were prepared by the high energy ball milling method with(NH4)2SO4 and titanium dioxide-bearing blast furnace slag(TBBFS) as ra...Sulfate-modified titanium dioxide-bearing blast furnace slag(STBBFS) photocatalysts were prepared by the high energy ball milling method with(NH4)2SO4 and titanium dioxide-bearing blast furnace slag(TBBFS) as raw materials.X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),scanning electron microscopy(SEM),thermogravimetric analysis(TGA),UV-visible diffuse reflectance absorption spectra(UV-Vis),adsorption experiment and photocatalytic degradation measurement were conducted to characterize the structure,surface status,light absorption capacity,adsorption capacity and photocatalytic activity of the obtained photocatalysts.The adsorption equilibrium was described by the Langmuir isotherm model with a maximum adsorption capacity of 8.25 mg/g of Cr(VI) ions onto the STBBFS photocatalysts.As a result,sulfation of TBBFS improved the photocatalytic activities of STBBFSx photocatalysts.At a low calcination temperature,the photocatalytic activity of STBBFS300 photocatalyst was markedly higher compared with TBBFSx prepared at high calcination temperature,indicating that the photocatalytic activity of STBBFSx photocatalyst was determined by the balanced result between adsorption capacity and perovskite content.展开更多
(Ca, Mg)-α′-Sialon-AlN-BN powders were synthesized by the carbothermal reduction and nitridation (CRN) method using boron-rich slag, one of the intermediate products from pyrometallurgy separation of pageit, as the ...(Ca, Mg)-α′-Sialon-AlN-BN powders were synthesized by the carbothermal reduction and nitridation (CRN) method using boron-rich slag, one of the intermediate products from pyrometallurgy separation of pageit, as the staring material. The influences of synthesis temperature and holding time on the phase composition and microstructure during the microwave CRN were studied by XRD, SEM and EDS. The comparison between two heating techniques, conventional and microwave heating, on the synthesized powder was presented as well. The experimental results revealed that the phase compositions and microstructures of the synthesized products were greatly affected by the synthesis temperature and holding time. With an increase in the synthesis temperature or holding time, the relative amount of α′-Sialon increased and α′-Sialon became the main crystalline phase at 1400 °C for 6 h. The synthesized products also contained AlN, BN and a small amount of β-SiC. Elongated α′-Sialon grains, short rod AlN grains, aggregate nanoscale BN grains were observed in the synthesized powders. The reaction temperature of microwave heating method was reduced by 80 °C, the reaction time was shortened by 2 h, and more elongated α′-Sialon grains with large aspect ratio were observed.展开更多
The phenomena of tuyere upward-warp have been found at No.6 blast furnace in Kunming Steel Company China after its blow-in, which has made a great impact on the practical production of the furnace. Thus, a number of e...The phenomena of tuyere upward-warp have been found at No.6 blast furnace in Kunming Steel Company China after its blow-in, which has made a great impact on the practical production of the furnace. Thus, a number of efforts have been made to elucidate the mechanism of this phenomenon. The results of investigation and tests revealed that the enrichment and expansion of zinc in the tuyere bricks is the main factor leading to the tuyere upward-warp. The eroding behavior of zinc is that the inner structure of the tuyere bricks turns from dense to loose with entering, enriching and expanding of zinc, which forms spot-like→stripe-like→ditch-like→vein-like→tumorlike eroding passage. Additionally, it is found that the sequence of deleterious ele- ments entering the tuyere refractory is K, Na, Zn and Pb, respectively. Finally, the phenomena and process of zinc crystallization and growth in the refractory have been clearly observed and recorded during this investigation.展开更多
The gasification characteristics and gasification kinetics of coke in complex CO2/CO/H2/H2O/N2 systems similar to the gas system of industrial blast furnace (BF) were studied by the method of isothermal thermogravimet...The gasification characteristics and gasification kinetics of coke in complex CO2/CO/H2/H2O/N2 systems similar to the gas system of industrial blast furnace (BF) were studied by the method of isothermal thermogravimetric analysis. The experimental gas compositions and the corresponding temperature were chosen according to data reported for industrial BFs. The gasification behavior of coke was described by the Random Pore Model (RPM), Volumetric Model (VM), and Grain Model (GM). Results showed that the gas composition of the coke gasification zone in BF changes slightly and that the temperature is the most important factor affecting coke gasification. The lower activation energy of coke samples (Coke Reaction Index (CRI)>50) is due to the high Fe2O3 in the ash, lower degree of graphitization, and larger pore structure. In addition, the choice of kinetic model does not differ substantially in describing the gasification mechanism of coke in a BF.展开更多
A multi-fluid blast furnace model was simply introduced and was used to simulate several innovative ironmaking operations. The simulation results show that injecting hydrogen bearing materials, especially injecting na...A multi-fluid blast furnace model was simply introduced and was used to simulate several innovative ironmaking operations. The simulation results show that injecting hydrogen bearing materials, especially injecting natural gas and plastics, the hydrogen reduction is enhanced, and the furnace performance is improved simultaneously. Total heat input shows obvious decrease due to the decrease of heat consumption in direct reduction, solution loss and silicon transfer reactions. If carbon composite agglomerates are charged into the furnace, the temperature of thermal reserve zone will obviously decrease, and the reduction of iron-bearing burden materials will be retarded. However, the efficiency of blast furnace is improved just due to the decrease in heat requirements for solution loss, sinter reduction, and silicon transfer reactions, and less heat loss through top gas and furnace wall. Finally, the model is used to investigate the performance of blast furnace under the condition of top gas recycling together with plastics injection, cold oxygen blasting and carbon composite agglomerate charging. The lower furnace temperature, extremely accelerated reduction rate, drastically decreased CO2 emission and remarkably enhanced heat efficiency were obtained by using the innovative operations, and the blast furnace operation with superhigh efficiency can be realized.展开更多
A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast...A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium-bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, andistribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each componenFinally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layemainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phaswhose major crystalline phase is magnesium melilite(Ca2Mg Si2O7) and the main source of the slag phase is coke ash. It is clearly determinethat solid particles such as graphite, Ti(C,N) and Mg Al2O4play an important role in the formation of the protective layer, and the key factofor promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.展开更多
The co-reduction roasting and grinding-magnetic separation of seaside titanomagnetite and blast furnace dust was investigated with and without fluorite addition at a reduction roasting temperature of 1250°C for 6...The co-reduction roasting and grinding-magnetic separation of seaside titanomagnetite and blast furnace dust was investigated with and without fluorite addition at a reduction roasting temperature of 1250°C for 60 min, a grinding fineness of-43 μm accounting for 69.02 wt% of the total, and a low-intensity magnetic field strength of 151 kA/m. The mineral composition, microstructure, and state of the roasted products were analyzed, and the concentrations of CO and CO_2 were analyzed in the co-reduction roasting. Better results were achieved with a small fluorite dosage(≤4 wt%) in the process of co-reduction. In addition, F^- was found to reduce the melting point and viscosity of the slag phase because of the high content of aluminate and silicate minerals in the blast furnace dust. The low moisture content of the blast furnace dust and calcic minerals inhibited the hydrolysis of CaF_2 and the loss of F^-. Compared with the blast furnace dust from Chengdeng, the blast furnace dusts from Jiugang and Jinxin inhibited the diffusion of F-when used as reducing agents, leading to weaker effects of fluorite.展开更多
基金supported by the National Natural Science Foundation of China(No.52174296)the Key Laboratory of Metallurgical Industry Safety&Risk Prevention and Control,Ministry of Emergency Management,China.
文摘The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneven distribution of cooling water in parallel pipes based on hydrodynamic principles,discusses the feasible methods for the improvement of BF cooling intensity,and reviews the pre-paration process,performance,and damage characteristics of three key equipment pieces:coolers,tuyeres,and hearth refractories.Fur-thermoere,to attain better control of these critical components under high-temperature working conditions,we propose the application of optimized technologies,such as BF operation and maintenance technology,self-repair technology,and full-lifecycle management techno-logy.Finally,we propose further researches on safety assessments and predictions for key BF equipment under new operating conditions.
基金financially supported by the General Program of the National Natural Science Foundation of China (No. 52274326)the Fundamental Research Funds for the Central Universities (No. N2425031)+3 种基金Seventh Batch of Ten Thousand Talents Plan (No. ZX20220553)China Baowu Low Carbon Metallurgy Innovation Foundation (No. BWLCF202109)The key technology research and development and application of digital transformation throughout the iron and steel production process (No. 2023JH2/101800058)Liaoning Province Science and Technology Plan Joint Program (Key Research and Development Program Project)
文摘The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed.The data on raw and fuel materials,process op-eration,smelting state,and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed.A novel method for the delay analysis of furnace heat indicators was established.The extracted delay variables were found to play an important role in modeling.The method that combined the genetic algorithm and stacking efficiently im-proved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model.The hit ratio for predicting the temperature of hot metal in the error range of±10℃ was 92.4%,and that for the chemical heat of hot metal in the error range of±0.1wt%was 93.3%.On the basis of the furnace heat prediction model and expert experience,a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels.These sugges-tions were highly accepted by BF operators.Finally,the comprehensive and dynamic model proposed in this work was successfully ap-plied in a practical BF system.It improved the BF temperature level remarkably,increasing the furnace temperature stability rate from 54.9%to 84.9%.This improvement achieved considerable economic benefits.
基金financially supported by the Young Elite Scientist Sponsorship Program by CAST(No.YESS20210090)the National Natural Science Foundation of China(No.51974019),Beijing Natural Science Foundation(J210017)China Baowu Low Carbon Metallurgy Innovation Foundation(Nos.BWLCF202119 and BWLCF 202117)。
文摘Hydrogen-enriched blast furnace ironmaking has become an essential route to reduce CO_(2)emissions in the ironmaking process.However,hydrogen-enriched reduction produces large amounts of H_(2)O,which places new demands on coke quality in a blast furnace.In a hydrogen-rich blast furnace,the presence of H_(2)O promotes the solution loss reaction.This result improves the reactivity of coke,which is 20%-30%higher in a pure H_(2)O atmosphere than in a pure CO_(2)atmosphere.The activation energy range is 110-300 kJ/mol between coke and CO_(2)and 80-170 kJ/mol between coke and H_(2)O.CO_(2)and H_(2)O are shown to have different effects on coke degradation mechanisms.This review provides a comprehensive overview of the effect of H_(2)O on the structure and properties of coke.By exploring the interactions between H_(2)O and coke,several unresolved issues in the field requiring further research were identified.This review aims to provide valuable insights into coke behavior in hydrogen-rich environments and promote the further development of hydrogen-rich blast furnace ironmaking processes.
基金the National Key R&D Program of China(No.2022YFE0208100)the National Natural Science Foundation of China(No.5274316)+1 种基金the Key Research and Development Plan of Anhui Province,China(No.202210700037)the Major Science and Technology Project of Xinjiang Uygur Autonomous Region,China(No.2022A01003).
文摘The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion.
基金Funded by the National Natural Science Foundation of China Youth Fund(No.52204419)the Liaoning Provincial Natural Science Foundation(No.2022-BS-076)the Guangxi Science and Technology Major Project(No.2021AA12013)。
文摘To realize the resource utilization of the valuable metals in the titanium-containing blast furnace slag,the process route of “hydrochloric acid leaching-electrolysis-carbonization and carbon dioxide capture-preparation of calcium carbonate” was proposed.In this study,the influences of process conditions on the leaching rates of calcium,magnesium,aluminum,and iron and the phases of the leaching residue were investigated for the leaching process.The experimental results show that the HCl solution could selectively leach the elements from the titanium-containing blast furnace slag.The better leaching conditions are the HCl solution concentration of 4 mol/L,the leaching time of 30 min,the ratio of liquid volume to solid gas of 10 mL/g,and the stirring paddle speed of 300 r/min.Under the conditions,the leaching rates of calcium,magnesium,aluminum,and iron can reach 85.87%,73.41%,81.35%,and 59.08%,and the leaching rate of titanium is 10.71%.The iron and the aluminum are removed from the leachate to obtain iron-aluminum water purification agents,and the magnesium is removed from the leachate to obtain magnesium hydroxide.The leaching residue phase is dominated by perovskite,followed by magnesium silicate and tricalcium aluminate,and the titaniumrich material could be obtained from the leaching residue by desiliconization.
基金the National Natural Science Foundation of China(62273359)the General Project of Hunan Natural Science Foundation of China(2022JJ30748)the National Major Scientific Research Equipment of China(61927803)。
文摘Blast furnace(BF)burden surface contains the most abundant,intuitive and credible smelting information and acquiring high-definition and high-brightness optical images of which is essential to realize precise material charging control,optimize gas flow distribution and improve ironmaking efficiency.It has been challengeable to obtain high-quality optical burden surface images under high-temperature,high-dust,and extremelydim(less than 0.001 Lux)environment.Based on a novel endoscopic sensing detection idea,a reverse telephoto structure starlight imaging system with large field of view and large aperture is designed.Combined with a water-air dual cooling intelligent self-maintenance protection device and the imaging system,a starlight high-temperature industrial endoscope is developed to obtain clear optical burden surface images stably under the harsh environment.Based on an endoscope imaging area model,a material flow trajectory model and a gas-dust coupling distribution model,an optimal installation position and posture configuration method for the endoscope is proposed,which maximizes the effective imaging area and ensures large-area,safe and stable imaging of the device in a confined space.Industrial experiments and applications indicate that the proposed method obtains clear and reliable large-area optical burden surface images and reveals new BF conditions,providing key data support for green iron smelting.
文摘Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save energy and water in the slag flushing process of blast furnaces,an ideal comprehensive cascade utilization system scheme for annual recovery of waste heat is proposed.Based on the measured waste heat data of a steel plant,design calculations are carried out to further analyze the economic feasibility of the new scheme and provide reference for its promotion and application.
基金the Postdoctoral Research Foundation of China (No.2017M611799)the Basic Research Program of Jiangsu Province (No.BK20190690)。
文摘A blast furnace slag zeolite(BFSZ)material was successfully synthesized from BFS by alkaline fusion and hydrothermal treatment.Via the analyses of XRD,FT-IR,FE-SEM,XRF,CEC and BET surface area measurement,when zeolite was synthesized at a crystallization temperature of 100℃with initial Si/Al ratio of 1:1,the main composition in the product is Na-A zeolite.Under the above conditions,the BFSZ was synthesized with CEC of 3.06 meq/g and maximum BET surface area of 37.55 m^(2)·g^(-1).Moreover,the incorporating of BFS-derived minor metals(such as Mg,Fe,and Ca)are found to be of little importance for the synthesis of BFSZ.Thus the obtained BFSZ material has a great adsorption performance for removing Mn^(2+),Cu^(2+),and NH_(4)^(+)ions diluted in water,owing to the higher CEC.
基金supported in part by the National Natural Science Foundation of China(61933015)in part by the Central University Basic Research Fund of China under Grant K20200002(for NGICS Platform,Zhejiang University)。
文摘Due to the problems of few fault samples and large data fluctuations in the blast furnace(BF)ironmaking process,some transfer learning-based fault diagnosis methods are proposed.The vast majority of such methods perform distribution adaptation by reducing the distance between data distributions and applying a classifier to generate pseudo-labels for self-training.However,since the training data is dominated by labeled source domain data,such classifiers tend to be weak classifiers in the target domain.In addition,the features generated after domain adaptation are likely to be at the decision boundary,resulting in a loss of classification performance.Hence,we propose a novel method called minimax entropy-based co-training(MMEC)that adversarially optimizes a transferable fault diagnosis model for the BF.The structure of MMEC includes a dual-view feature extractor,followed by two classifiers that compute the feature's cosine similarity to representative vector of each class.Knowledge transfer is achieved by alternately increasing and decreasing the entropy of unlabeled target samples with the classifier and the feature extractor,respectively.Transfer BF fault diagnosis experiments show that our method improves accuracy by about 5%over state-of-the-art methods.
基金Funding Statement:This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Energy shortage and the emission of greenhouse gases have become a global problem of urgent concern.Therefore,there is an urgent need to develop a low carbon building material.Geopolymers have become a hot topic due to their environmental sustainability and the feasibility of immobilizing industrial waste.In this paper,steel slag(SS)fines were investigated as auxiliary materials of blast furnace slag(BFS)based geopolymer.The hydration heat properties,flowability,compressive strength,sorptivity coefficient,X-ray diffraction(XRD),and scanning electron microscopy(SEM)of the geopolymer pastes were determined.The results showed that the incorporation of SS weakened the reactivity of the BFS-based geopolymer paste and improved the flow values of the paste.The compressive strength of the geopolymer with 20%SS content reached 117 MPa at 28 d.The geopolymer specimens with high compressive strength showed a low sorptivity coefficient.The microscopic results showed that the addition of the appropriate amount of SS reduced the cracks,improved the density of the geopolymer,and produced a geopolymer composite with excellent mechanical properties.
基金acknowledged DEQ/IT/UFRRJ,FEG/UNESP-Guaratinguetáand EEL/USP-Lorena for their support in carrying out the analyses.
文摘Aluminous refractory materials with high alumina contents are widely used in the steel industry,and the higher the alumina content,the higher the working temperature.Properties such as high refractoriness and thermal shock resistance lead these refractory materials to be used as channel linings of blast furnaces,where they are exposed to the attack by slag,molten steel,working cycles and sudden temperature changes between 25℃(room temperature)and 1520℃(the temperature of molten pig iron).In this work,microstructural changes in post-mortem aluminous refractory bricks were investigated by apparent porosity,X-ray diffraction analysis(XRD),Fourier transform infrared spectroscopy(FTIR),scanning electron microscopy,and X-ray dispersion energy spectrometry(SEM/EDS).The results showed an increase in the apparent porosity and the bulk density and the presence of the phases mullite,sillimanite,alumina,and quartz in the post-mortem brick.Calcium and magnesium were not detected in the microstructure of the post-mortem brick,indicating that slags did not corrode these refractory materials.Therefore,the microstructural changes that occurred in the post-mortem bricks must be due to thermal cycling.In the X-ray diffraction(XRD)test,mullite,sillimanite,quartz,andα-alumina phases were identified.These results indicate that the aluminous refractory was obtained from sillimanite.In infrared spectroscopy(FTIR)it was possible to identify the vibration bands referring to the Si-O and Al-O bonds.The increase in the porosity is a result of cracks caused by work cycles at high temperatures and the temperature gradient to which the refractory was subjected during use.Through the micrograph it was possible to identify the presence of acicular mullite.The absence of magnesium and calcium in the microanalysis results by energy dispersed X-ray spectrometry(EDS)indicates that there was no infiltration by slag or liquid iron.These results indicate that the microstructural changes that occurred in the post-mortem aluminous refractory were of a thermal nature.
文摘A SiC assembled large block for blast furnace tuyeres was prepared using silicon carbide particles(3-1 and 1-0.088 mm)and fine powder(<0.088 mm),silicon powder(<0.088 mm),industrial carbon black(N990),microsilica,ρ-Al_(2)O_(3) powder,etc.as raw materials.The developed block was compared with a silicon nitride bonded silicon carbide brick,a self-bonded silicon carbide brick and an imported self-bonded silicon carbide block to analyze and evaluate their service performance.The results show that:(1)in the 0-100 mm zone,the SiC large block mainly consists ofβ-SiC and nitrides such as O'-SiAlON,β-SiAlON,α-Si_(3)N_(4),and Si_(2)N_(2)O,the bulk density is 2.68-2.70 g·cm^(-3),the apparent porosity is 14%-15%,and the material structure is uniform;(2)in the 0-100 mm zone,β-SiC nano-whiskers intercalate with nitrides;with the depth increasing,the number of flocculentβ-SiC nano-whiskers increases,while the number of nitrides decreases;when the depth reaches 150 mm or more,the main bonding phases areβ-SiC and mullite;(3)compared with the reference products,the developed SiC large block has a good basic performance,and after alkali corrosion,the mass change rate is-0.1%,which is obviously superior to the imported self-bonded silicon carbide and the homemade silicon nitride bonded silicon carbide materials.
文摘The article introduces the composition and working principle of the batching and weighing system underneath the blast furnace hearth.Besides,the shortcomings of the batching and weighing system during installation,debugging,and calibration,as well as the dynamic errors in the batching process are also analyzed.Corresponding solutions are then provided.
基金Project (2007CB613504) supported by the National Basic Research Program of ChinaProject (307009) supported by the Foundation for Key Program of Ministry of Education,China+1 种基金Project (N110423003) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (E2012501012) supported by Natural Science Foundation-Steel and Iron Foundation of Hebei Province,China
文摘Sulfate-modified titanium dioxide-bearing blast furnace slag(STBBFS) photocatalysts were prepared by the high energy ball milling method with(NH4)2SO4 and titanium dioxide-bearing blast furnace slag(TBBFS) as raw materials.X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),scanning electron microscopy(SEM),thermogravimetric analysis(TGA),UV-visible diffuse reflectance absorption spectra(UV-Vis),adsorption experiment and photocatalytic degradation measurement were conducted to characterize the structure,surface status,light absorption capacity,adsorption capacity and photocatalytic activity of the obtained photocatalysts.The adsorption equilibrium was described by the Langmuir isotherm model with a maximum adsorption capacity of 8.25 mg/g of Cr(VI) ions onto the STBBFS photocatalysts.As a result,sulfation of TBBFS improved the photocatalytic activities of STBBFSx photocatalysts.At a low calcination temperature,the photocatalytic activity of STBBFS300 photocatalyst was markedly higher compared with TBBFSx prepared at high calcination temperature,indicating that the photocatalytic activity of STBBFSx photocatalyst was determined by the balanced result between adsorption capacity and perovskite content.
基金Project (2006AA06Z368) supported by High-tech Research and Development Programs of ChinaProject (N100402007) supported by the Fundamental Research Funds for the Central Universities in China
文摘(Ca, Mg)-α′-Sialon-AlN-BN powders were synthesized by the carbothermal reduction and nitridation (CRN) method using boron-rich slag, one of the intermediate products from pyrometallurgy separation of pageit, as the staring material. The influences of synthesis temperature and holding time on the phase composition and microstructure during the microwave CRN were studied by XRD, SEM and EDS. The comparison between two heating techniques, conventional and microwave heating, on the synthesized powder was presented as well. The experimental results revealed that the phase compositions and microstructures of the synthesized products were greatly affected by the synthesis temperature and holding time. With an increase in the synthesis temperature or holding time, the relative amount of α′-Sialon increased and α′-Sialon became the main crystalline phase at 1400 °C for 6 h. The synthesized products also contained AlN, BN and a small amount of β-SiC. Elongated α′-Sialon grains, short rod AlN grains, aggregate nanoscale BN grains were observed in the synthesized powders. The reaction temperature of microwave heating method was reduced by 80 °C, the reaction time was shortened by 2 h, and more elongated α′-Sialon grains with large aspect ratio were observed.
基金supported by Program for New Century Excellent Talents in University(NCET-2008-0099)
文摘The phenomena of tuyere upward-warp have been found at No.6 blast furnace in Kunming Steel Company China after its blow-in, which has made a great impact on the practical production of the furnace. Thus, a number of efforts have been made to elucidate the mechanism of this phenomenon. The results of investigation and tests revealed that the enrichment and expansion of zinc in the tuyere bricks is the main factor leading to the tuyere upward-warp. The eroding behavior of zinc is that the inner structure of the tuyere bricks turns from dense to loose with entering, enriching and expanding of zinc, which forms spot-like→stripe-like→ditch-like→vein-like→tumorlike eroding passage. Additionally, it is found that the sequence of deleterious ele- ments entering the tuyere refractory is K, Na, Zn and Pb, respectively. Finally, the phenomena and process of zinc crystallization and growth in the refractory have been clearly observed and recorded during this investigation.
基金financially supported by the National Key Research and Development Program of China (Nos. 2017YFB0304300 and 2017YFB0304303)the National Science Foundation of China (No. 51774032)the Chinese Fundamental Research Funds for the Central Universities (No. FRF-TP-17-086A1)
文摘The gasification characteristics and gasification kinetics of coke in complex CO2/CO/H2/H2O/N2 systems similar to the gas system of industrial blast furnace (BF) were studied by the method of isothermal thermogravimetric analysis. The experimental gas compositions and the corresponding temperature were chosen according to data reported for industrial BFs. The gasification behavior of coke was described by the Random Pore Model (RPM), Volumetric Model (VM), and Grain Model (GM). Results showed that the gas composition of the coke gasification zone in BF changes slightly and that the temperature is the most important factor affecting coke gasification. The lower activation energy of coke samples (Coke Reaction Index (CRI)>50) is due to the high Fe2O3 in the ash, lower degree of graphitization, and larger pore structure. In addition, the choice of kinetic model does not differ substantially in describing the gasification mechanism of coke in a BF.
文摘A multi-fluid blast furnace model was simply introduced and was used to simulate several innovative ironmaking operations. The simulation results show that injecting hydrogen bearing materials, especially injecting natural gas and plastics, the hydrogen reduction is enhanced, and the furnace performance is improved simultaneously. Total heat input shows obvious decrease due to the decrease of heat consumption in direct reduction, solution loss and silicon transfer reactions. If carbon composite agglomerates are charged into the furnace, the temperature of thermal reserve zone will obviously decrease, and the reduction of iron-bearing burden materials will be retarded. However, the efficiency of blast furnace is improved just due to the decrease in heat requirements for solution loss, sinter reduction, and silicon transfer reactions, and less heat loss through top gas and furnace wall. Finally, the model is used to investigate the performance of blast furnace under the condition of top gas recycling together with plastics injection, cold oxygen blasting and carbon composite agglomerate charging. The lower furnace temperature, extremely accelerated reduction rate, drastically decreased CO2 emission and remarkably enhanced heat efficiency were obtained by using the innovative operations, and the blast furnace operation with superhigh efficiency can be realized.
基金financially supported by the Natural Science Foundation of China(No.51304014)the Natural Science Foundation of China and Baosteel(No.51134008)the National Basic Research Program of China(No.2012CB720401)
文摘A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium-bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, andistribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each componenFinally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layemainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phaswhose major crystalline phase is magnesium melilite(Ca2Mg Si2O7) and the main source of the slag phase is coke ash. It is clearly determinethat solid particles such as graphite, Ti(C,N) and Mg Al2O4play an important role in the formation of the protective layer, and the key factofor promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.
基金financially supported by the National Natural Science Foundation of China (No. 51474018)
文摘The co-reduction roasting and grinding-magnetic separation of seaside titanomagnetite and blast furnace dust was investigated with and without fluorite addition at a reduction roasting temperature of 1250°C for 60 min, a grinding fineness of-43 μm accounting for 69.02 wt% of the total, and a low-intensity magnetic field strength of 151 kA/m. The mineral composition, microstructure, and state of the roasted products were analyzed, and the concentrations of CO and CO_2 were analyzed in the co-reduction roasting. Better results were achieved with a small fluorite dosage(≤4 wt%) in the process of co-reduction. In addition, F^- was found to reduce the melting point and viscosity of the slag phase because of the high content of aluminate and silicate minerals in the blast furnace dust. The low moisture content of the blast furnace dust and calcic minerals inhibited the hydrolysis of CaF_2 and the loss of F^-. Compared with the blast furnace dust from Chengdeng, the blast furnace dusts from Jiugang and Jinxin inhibited the diffusion of F-when used as reducing agents, leading to weaker effects of fluorite.