期刊文献+
共找到2,772篇文章
< 1 2 139 >
每页显示 20 50 100
Transient response of doubly-curved bio-inspired composite shells resting on viscoelastic foundation subject to blast load using improved first-order shear theory and isogeometric approach 被引量:1
1
作者 Thuy Tran Thi Thu Tu Nguyen Anh +1 位作者 Hue Nguyen Thi Hong Nguyen Thi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期171-193,共23页
Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties... Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures. 展开更多
关键词 blast load Modified first-order shear theory Biological composite structures
下载PDF
Global characterization of OsPIP aquaporins reveals that the H_(2)O_(2)transporter OsPIP2;6 increases resistance to rice blast 被引量:1
2
作者 Gousi Li Jingluan Han +6 位作者 Chen Yi Hao Luo Yuzhu Wang Fengpin Wang Xiaoyu Wang Letian Chen Yaling Zhang 《The Crop Journal》 SCIE CSCD 2024年第1期102-109,共8页
Plasma membrane intrinsic proteins(PIPs)are conserved plant aquaporins that transport small molecules across the plasma membrane to trigger instant stress responses and maintain cellular homeostasis under biotic and a... Plasma membrane intrinsic proteins(PIPs)are conserved plant aquaporins that transport small molecules across the plasma membrane to trigger instant stress responses and maintain cellular homeostasis under biotic and abiotic stress.To elucidate their roles in plant immunity to pathogen attack,we characterized the expression patterns,subcellular localizations,and H_(2)O_(2)-transport ability of 11 OsPIPs in rice(Oryza sativa),and identified OsPIP2;6 as necessary for rice disease resistance.OsPIP2;6 resides on the plasma membrane and facilitates cytoplasmic import of the immune signaling molecule H_(2)O_(2).Knockout of OsPIP2;6 increases rice susceptibility to Magnaporthe oryzae,indicating a positive function in plant immunity.OsPIP2;6 interacts with OsPIP2;2,which has been reported to increase rice resistance to pathogens via H_(2)O_(2)transport.Our findings suggest that OsPIP2;6 cooperates with OsPIP2;2 as a defense signal transporter complex during plant–pathogen interaction. 展开更多
关键词 AQUAPORIN Plant immunity Rice blast H_(2)O_(2)transport
下载PDF
Effect of minocycline and its nano-formulation on central auditory system in blast-induced hearing loss rat model
3
作者 Venkatesan Perumal Arun Reddy Ravula +1 位作者 Ningning Shao Namas Chandra 《Journal of Otology》 CSCD 2023年第1期38-48,共11页
Blast injuries are common among the military service members and veterans.One of the devastating effects of blast wave induced TBI is either temporary or permanent hearing loss.Treating hearing loss using minocycline ... Blast injuries are common among the military service members and veterans.One of the devastating effects of blast wave induced TBI is either temporary or permanent hearing loss.Treating hearing loss using minocycline is restricted by optimal drug concentration,route of administration,and its half-life.Therefore,therapeutic approach using novel therapeutic delivery method is in great need.Among the different delivery methods,nanotechnology-based drug delivery is desirable,which can achieve longer systemic circulation,pass through some biological barriers and specifically targets desired sites.The current study aimed to examine therapeutic effect of minocycline and its nanoparticle formulation in moderate blast induced hearing loss rat model through central auditory system.The I.v.administered nanoparticle at reduced dose and frequency than regularly administered toxic dose.After moderate blast exposure,rats had hearing impairment as determined by ABR at 7-and 30-days post exposure.In chronic condition,free minocycline also showed the significant reduction in ABR threshold.In central auditory system,it is found in this study that minocycline nanoparticles ameliorate excitation in inferior colliculus;and astrocytes and microglia activation after the blast exposure is reduced by minocycline nanoparticles administration.The study demonstrated that in moderate blast induced hearing loss,minocycline and its nanoparticle formulation exhibited the optimal therapeutic effect on the recovery of the ABR impairment and a protective effect through central auditory system.In conclusion,targeted and non-targeted nanoparticle formulation have therapeutic effect on blast induced hearing loss. 展开更多
关键词 MINOCYCLINE NANOPARTICLE Hearing loss blast injury and targeted drug delivery
下载PDF
Blast waveform tailoring using controlled venting in blast simulators and shock tubes
4
作者 Edward Chern Jinn Gan Alex Remennikov David Ritzel 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期14-26,共13页
A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constra... A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constrained with the lack of effective ways to control blast wave profiles and as a result have a limited performance range.Some wave shaping techniques employed in some facilities are reviewed but often necessitate extensive geometric modifications,inadvertently cause flow anomalies,and/or are only applicable under very specific configurations.This paper investigates controlled venting as an expedient way for waveforms to be tuned without requiring extensive modifications to the driver or existing geometry and could be widely applied by existing and future blast simulation and shock tube facilities.The use of controlled venting is demonstrated experimentally using the Advanced Blast Simulator(shock tube)at the Australian National Facility of Physical Blast Simulation and via numerical flow simulations with Computational Fluid Dynamics.Controlled venting is determined as an effective method for mitigating the impact of re-reflected waves within the blast simulator.This control method also allows for the adjustment of parameters such as tuning the peak overpressure,the positive phase duration,and modifying the magnitude of the negative phase and the secondary shock of the blast waves.This paper is concluded with an illustration of the potential expanded performance range of the Australian blast simulation facility when controlled venting for blast waveform tailoring as presented in this paper is applied. 展开更多
关键词 Advanced blast simulator Shock wave propagation Far-field explosion blast loads blast waves Computational fluid dynamics
下载PDF
Development of an experimental method for well-controlled blast induced traumatic limb fracture in rats
5
作者 Luyang Xu Xiancheng Yu +4 位作者 Clement DFavier Ibidumo Igah Thuy-Tien Nguyen Warren Macdonald Anthony MJ.Bull 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期168-176,共9页
Heterotopic ossification(HO)is a consequence of traumatic bone and tissue damage,which occurs in 65%of military casualties with blast-associated amputations.However,the mechanisms behind blast-induced HO remain unclea... Heterotopic ossification(HO)is a consequence of traumatic bone and tissue damage,which occurs in 65%of military casualties with blast-associated amputations.However,the mechanisms behind blast-induced HO remain unclear.Animal models are used to study blast-induced HO,but developing such models is challenging,particularly in how to use a pure blast wave(primary blast)to induce limb fracture that then requires an amputation.Several studies,including our recent study,have developed platforms to induce limb fractures in rats with blast loading or a mixture of blast and impact loading.However,these models are limited by the survivability of the animal and repeatability of the model.In this study,we developed an improved platform,aiming to improve the animal's survivability and injury repeatability as well as focusing on primary blast only.The platform exposed only one limb of the rat to a blast wave while providing proper protection to the rest of the rat's body.We obtained very consistent fracture outcome in the tibia(location and pattern)in cadaveric rats with a large range of size and weight.Importantly,the rats did not obviously move during the test,where movement is a potential cause of uncontrolled injury.We further conducted parametric studies by varying the features of the design of the platform.These factors,such as how the limb is fixed and how the cavity through which the limb is placed is sealed,significantly affect the resulting injury.This platform and test setups enable well-controlled limb fracture induced directly by pure blast wave,which is the fundamental step towards a complete in vivo animal model for blast-induced HO induced by primary blast alone,excluding secondary and tertiary blast injury.In addition,the platform design and the findings presented here,particularly regarding the proper protection of the animal,have implications for future studies investigating localized blast injuries,such as blast induced brain and lung injuries. 展开更多
关键词 blast injury BIOMECHANICS Heterotopic ossification Limb fracture blast wave Animal model
下载PDF
Research progress and future prospects in the service security of key blast furnace equipment
6
作者 Yanxiang Liu Kexin Jiao +3 位作者 Jianliang Zhang Cui Wang Lei Zhang Xiaoyue Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2121-2135,共15页
The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneve... The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneven distribution of cooling water in parallel pipes based on hydrodynamic principles,discusses the feasible methods for the improvement of BF cooling intensity,and reviews the pre-paration process,performance,and damage characteristics of three key equipment pieces:coolers,tuyeres,and hearth refractories.Fur-thermoere,to attain better control of these critical components under high-temperature working conditions,we propose the application of optimized technologies,such as BF operation and maintenance technology,self-repair technology,and full-lifecycle management techno-logy.Finally,we propose further researches on safety assessments and predictions for key BF equipment under new operating conditions. 展开更多
关键词 blast furnace EQUIPMENT service security blast furnace campaign SELF-REPAIR
下载PDF
Experimental and numerical analyses of the effect of fibre content on the close-in blast performance of a UHPFRC beam
7
作者 Junbo Yan Qiyue Zhang +4 位作者 Yan Liu Yingliang Xu Zhenqing Shi Fan Bai Fenglei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期242-261,共20页
Limited research has been conducted on the influences of fiber content on close-in blasting characteristics for ultrahigh-performance fiber-reinforced concrete(UHPFRC)beams.This paper aims to address this knowledge ga... Limited research has been conducted on the influences of fiber content on close-in blasting characteristics for ultrahigh-performance fiber-reinforced concrete(UHPFRC)beams.This paper aims to address this knowledge gap through experimental and mesoscale numerical methods.Experiments were conducted on ten UHPFRC beams built with varying steel fiber volumetric fractions subjected to close-in explosive conditions.Additionally,this study considered other parameters,such as the longitudinal reinforcement type and ratio.In the case of UHPFRC beams featuring normal-strength longitudinal reinforcement of diametersΦ12,Φ16,andΦ20,a reduction in maximum displacement by magnitudes of19.6%,19.5%,and 17.4%was observed,respectively,as the volumetric fractions of fiber increased from1.0%to 2.5%.In addition,increasing the longitudinal reinforcement ratio and using high-strength steel longitudinal reinforcement both significantly reduced the deformation characteristics and increase the blasting resistances of UHPFRC beams.However,the effects on the local crushing and spalling damage were not significant.A mesoscale finite element model,which considers the impacts of fiber parameters on UHPFRC beam behaviors,was also established and well correlated with the test findings.Nevertheless,parametric analyses were further conducted to examine the impacts of the steel fiber content and length and the hybrid effects of various types of microfibers and steel fibers on the blasting performance of UHPFRC beams. 展开更多
关键词 blast performance Close-in blast Fiber content Mesoscale approach UHPFRC beams
下载PDF
Adjustment mechanism of blasting dynamic-static action in the water decoupling charge
8
作者 Hao Zhang Xueyang Xing +3 位作者 Yiteng Du Tingchun Li Jianxin Yu Qingwen Zhu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期821-836,共16页
Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and qu... Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and quasi-static pressure.However,the quantitative relationship between the two contributions is unclear,and it is difficult to provide reasonable theoretical support for the design of water decoupling blasting.In this study,a theoretical model of blasting fracturing partitioning is established.The mechanical mechanism and determination method of the optimal decoupling coefficient are obtained.The reliability is verified through model experiments and a field test.The results show that with the increasing of decoupling coefficient,the rock breaking ability of blasting dynamic action decreases,while quasi-static action increases and then decreases.The ability of quasi-static action to wedge into cracks changes due to the spatial adjustment of the blast hole and crushed zone.The quasi-static action plays a leading role in the fracturing range,determining an optimal decoupling coefficient.The optimal water decoupling coefficient is not a fixed value,which can be obtained by the proposed theoretical model.Compared with the theoretical results,the maximum error in the model experiment results is 8.03%,and the error in the field test result is 3.04%. 展开更多
关键词 Water decoupling blasting blasting dynamic-static action Optimal decoupling coefficient Adjustment mechanism
下载PDF
Experimental and numerical study on protective effect of RC blast wall against air shock wave
9
作者 Xin-zhe Nian Quan-min Xie +2 位作者 Xin-li Kong Ying-kang Yao Kui Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期567-579,共13页
Prototype experiments were carried out on the explosion-proof performance of the RC blast wall.The mass of TNT detonated in the experiments is 5 kg and 20 kg respectively.The shock wave overpressure was tested in diff... Prototype experiments were carried out on the explosion-proof performance of the RC blast wall.The mass of TNT detonated in the experiments is 5 kg and 20 kg respectively.The shock wave overpressure was tested in different regions.The above experiments were numerically simulated,and the simulated shock wave overpressure waveforms were compared with that tested and given by CONWEP program.The results show that the numerically simulated waveform is slightly different from the test waveform,but similar to CONWEP waveform.Through dimensional analysis and numerical simulation under different working conditions,the equation for the attenuation rate of the diffraction overpressure behind the blast wall was obtained.According to the corresponding standards,the degree of casualties and the damage degree of the brick concrete building at a certain distance behind the wall can be determined when parameters are set.The above results can provide a reference for the design and construction of the reinforced concrete blast wall. 展开更多
关键词 blast wall Shock wave DIFFRACTION OVERPRESSURE Protection
下载PDF
Coke behavior with H_(2)O in a hydrogen-enriched blast furnace:A review
10
作者 Feng Zhou Daosheng Peng +5 位作者 Kejiang Li Alberto N.Conejo Haotian Liao Zixin Xiong Dongtao Li Jianliang Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期959-976,共18页
Hydrogen-enriched blast furnace ironmaking has become an essential route to reduce CO_(2)emissions in the ironmaking process.However,hydrogen-enriched reduction produces large amounts of H_(2)O,which places new demand... Hydrogen-enriched blast furnace ironmaking has become an essential route to reduce CO_(2)emissions in the ironmaking process.However,hydrogen-enriched reduction produces large amounts of H_(2)O,which places new demands on coke quality in a blast furnace.In a hydrogen-rich blast furnace,the presence of H_(2)O promotes the solution loss reaction.This result improves the reactivity of coke,which is 20%-30%higher in a pure H_(2)O atmosphere than in a pure CO_(2)atmosphere.The activation energy range is 110-300 kJ/mol between coke and CO_(2)and 80-170 kJ/mol between coke and H_(2)O.CO_(2)and H_(2)O are shown to have different effects on coke degradation mechanisms.This review provides a comprehensive overview of the effect of H_(2)O on the structure and properties of coke.By exploring the interactions between H_(2)O and coke,several unresolved issues in the field requiring further research were identified.This review aims to provide valuable insights into coke behavior in hydrogen-rich environments and promote the further development of hydrogen-rich blast furnace ironmaking processes. 展开更多
关键词 hydrogen ironmaking coke behavior blast furnace GASIFICATION microstructure kinetics
下载PDF
Effects of the initiation position on the damage and fracture characteristics of linear-charge blasting in rock
11
作者 Chenxi Ding Renshu Yang +3 位作者 Xiao Guo Zhe Sui Chenglong Xiao Liyun Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期443-451,共9页
To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and thre... To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and three-dimensional reconstruction methods. The fractal damage theory was used to quantify the crack distribution and damage degree of sandstone specimens after blasting. The results showed that regardless of an inverse or top initiation, due to compression deformation and sliding frictional resistance, the plugging medium of the borehole is effective. The energy of the explosive gas near the top of the borehole is consumed. This affects the effective crushing of rocks near the top of the borehole, where the extent of damage to Sections Ⅰ and Ⅱ is less than that of Sections Ⅲ and Ⅳ. In addition, the analysis revealed that under conditions of top initiation, the reflected tensile damage of the rock at the free face of the top of the borehole and the compression deformation of the plug and friction consume more blasting energy, resulting in lower blasting energy efficiency for top initiation. As a result, the overall damage degree of the specimens in the top-initiation group was significantly smaller than that in the inverse-initiation group. Under conditions of inverse initiation, the blasting energy efficiency is greater, causing the specimen to experience greater damage. Therefore, in the engineering practice of rock tunnel cut blasting, to utilize blasting energy effectively and enhance the effects of rock fragmentation, using the inverse-initiation method is recommended. In addition, in three-dimensional(3D) rock blasting, the bottom of the borehole has obvious end effects under the conditions of inverse initiation, and the crack distribution at the bottom of the borehole is trumpet-shaped. The occurrence of an end effect in the 3D linear-charge blasting model experiment is related to the initiation position and the blocking condition. 展开更多
关键词 blastING linear charge initiation position computed tomography three-dimensional reconstruction damage
下载PDF
Cross-upgrading of biomass hydrothermal carbonization and pyrolysis for high quality blast furnace injection fuel production:Physicochemical characteristics and gasification kinetics analysis
12
作者 Han Dang Runsheng Xu +2 位作者 Jianliang Zhang Mingyong Wang Jinhua Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期268-281,共14页
The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile con... The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion. 展开更多
关键词 blast furnace injection BIOMASS cross-upgrading hydrothermal carbonization PYROLYSIS physicochemical properties gasific-ation properties
下载PDF
Blast injury risks to humans within a military trench
13
作者 Idan E.Edri 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期91-104,共14页
In land warfare,trenches serve as vital defensive fortifications,offering protection to soldiers while engaging in combat.However,despite their protective function,soldiers often sustain injuries within these trenches... In land warfare,trenches serve as vital defensive fortifications,offering protection to soldiers while engaging in combat.However,despite their protective function,soldiers often sustain injuries within these trenches.The lack of corresponding blast data alongside empirical injury reports presents a significant knowledge gap,particularly concerning the blast pressures propagating within trench spaces following nearby explosions.This absence hinders the correlation between blast parameters,trench geometry,and reported injury cases,limiting our understanding of blast-related risks within trenches.This paper addresses the critical aspect of blast propagation within trench systems,essential for evaluating potential blast injury risks to individuals within these structures.Through advanced computational fluid dynamics(CFD)simulations,the study comprehensively investigates blast injury risks resulting from explosions near military trenches.Employing a sophisticated computational model,the research analyzes the dynamic blast effects within trenches,considering both geometrical parameters and blast characteristics influenced by explosive weight and scaled distance.The numerical simulations yield valuable insights into the impact of these parameters on blast injury risks,particularly focusing on eardrum rupture,lung injury,and traumatic brain injury levels within the trench.The findings elucidate distinct patterns of high-risk zones,highlighting unique characteristics of internal explosions due to confinement and venting dynamics along the trench.This study underscores the significance of detailed numerical modeling in assessing blast injury risks and provides a novel knowledge base for understanding risks associated with explosives detonating near military trenches.The insights gained contribute to enhancing safety measures in both military and civilian contexts exposed to blast events near trench structures. 展开更多
关键词 TRENCH blast Injury risk Eardrum rupture Lung injury Traumatic brain injury
下载PDF
Process metallurgy and data-driven prediction and feedback of blast furnace heat indicators
14
作者 Quan Shi Jue Tang Mansheng Chu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1228-1240,共13页
The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,... The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed.The data on raw and fuel materials,process op-eration,smelting state,and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed.A novel method for the delay analysis of furnace heat indicators was established.The extracted delay variables were found to play an important role in modeling.The method that combined the genetic algorithm and stacking efficiently im-proved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model.The hit ratio for predicting the temperature of hot metal in the error range of±10℃ was 92.4%,and that for the chemical heat of hot metal in the error range of±0.1wt%was 93.3%.On the basis of the furnace heat prediction model and expert experience,a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels.These sugges-tions were highly accepted by BF operators.Finally,the comprehensive and dynamic model proposed in this work was successfully ap-plied in a practical BF system.It improved the BF temperature level remarkably,increasing the furnace temperature stability rate from 54.9%to 84.9%.This improvement achieved considerable economic benefits. 展开更多
关键词 blast furnace furnace heat genetic algorithm stacking prediction and feedback
下载PDF
Performance of water-coupled charge blasting under different in-situ stresses
15
作者 ZHOU Zi-long WANG Zhen +2 位作者 CHENG Rui-shan CAI Xin LAN Ri-yan 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2300-2320,共21页
Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by ... Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses. 展开更多
关键词 water-coupled blasting in-situ stress water-coupled charge coefficient rock type borehole-connection angle
下载PDF
Advanced Machine Learning Methods for Prediction of Blast-Induced Flyrock Using Hybrid SVR Methods
16
作者 Ji Zhou Yijun Lu +3 位作者 Qiong Tian Haichuan Liu Mahdi Hasanipanah Jiandong Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1595-1617,共23页
Blasting in surface mines aims to fragment rock masses to a proper size.However,flyrock is an undesirable effect of blasting that can result in human injuries.In this study,support vector regression(SVR)is combined wi... Blasting in surface mines aims to fragment rock masses to a proper size.However,flyrock is an undesirable effect of blasting that can result in human injuries.In this study,support vector regression(SVR)is combined with four algorithms:gravitational search algorithm(GSA),biogeography-based optimization(BBO),ant colony optimization(ACO),and whale optimization algorithm(WOA)for predicting flyrock in two surface mines in Iran.Additionally,three other methods,including artificial neural network(ANN),kernel extreme learning machine(KELM),and general regression neural network(GRNN),are employed,and their performances are compared to those of four hybrid SVR models.After modeling,the measured and predicted flyrock values are validated with some performance indices,such as root mean squared error(RMSE).The results revealed that the SVR-WOA model has the most optimal accuracy,with an RMSE of 7.218,while the RMSEs of the KELM,GRNN,SVR-GSA,ANN,SVR-BBO,and SVR-ACO models are 10.668,10.867,15.305,15.661,16.239,and 18.228,respectively.Therefore,combining WOA and SVR can be a valuable tool for accurately predicting flyrock distance in surface mines. 展开更多
关键词 Flyrock induced by blasting optimization algorithms SVR GRNN
下载PDF
Modified Sadowski formula-based model for the slope shape amplification effect under multistage slope blasting vibration
17
作者 Xiaogang Wu Mingyang Wang +2 位作者 Hao Lu Yongjun Zhang Wen Nie 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期631-641,共11页
Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainl... Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainly focuses on blast center distance but neglects the amplification effect of blasting vibration waves by terraced terrain,from which the calculated blasting vibration velocities are smaller than the actual values,affecting the safety of the project.To address this issue,our model introduces the influences of slope and time into Sadowski formula to measure safety through blast vibration displacement.In the northern section of the open-pit quartz mine in Jinchang City,Gansu Province,China,the data of a continuous blasting slope project are referred to.Our findings reveal a noticeable vibration amplification effect during blasting when a multi-stage slope platform undergoes a sudden cross-sectional change near the upper overhanging surface.The amplification vibration coefficient increases with height,while vibration waves within rocks decrease from bottom to top.Conversely,platforms without distinct crosssectional changes exhibit no pronounced amplification during blasting.In addition,the vibration intensity decreases with distance as the rock height difference change propagates.The results obtained by the proposed blast vibration displacement equation incorporating slope shape influence closely agree with real-world scenarios.According to Pearson correlation coefficient(PPMCC)analysis,the average accuracy rate of our model is 88.84%,which exceeds the conventional Sadowski formula(46.92%). 展开更多
关键词 Multistage slope Slope shape influence factor Continuous blasting Sadowski formula Amplification effect
下载PDF
Energy and blast performance of beryllium in a model thermobaric composition in comparison with aluminum and magnesium
18
作者 Thomas M.Klapotke Stanisław Cudziło +1 位作者 Waldemar A.Trzcinski Jozef Paszula 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期13-19,共7页
A direct comparison is made between the effectiveness of Al,Mg,and Be powders as additional fuels in model thermobaric compositions containing 20%fuel,20%ammonium perchlorate,and 60%RDX(1,3,5-Trinitro-1,3,5-triazacycl... A direct comparison is made between the effectiveness of Al,Mg,and Be powders as additional fuels in model thermobaric compositions containing 20%fuel,20%ammonium perchlorate,and 60%RDX(1,3,5-Trinitro-1,3,5-triazacyclohexane)passivated with wax.Experimentally determined calorimetric measurements of the heat of detonation,along with the overpressure histories in an explosion chamber filled with nitrogen,were used to determine the quasi-static pressure(QSP)under anaerobic conditions.Overpressure measurements were also performed in a semi-closed bunker,and all blast wave parameters generated after the detonation of 500 g charges of the tested explosives were determined.Detonation calorimetry results,QSP values,and blast wave parameters(pressure amplitude,specific and total impulses)clearly indicate that Be is much more effective as an additional fuel than either Al or Mg in both anaerobic post-detonation reactions as well as the subsequent aerobic combustion.The heat of detonation of the RDXwax/AP/Be explosive mixture is over 40%and 50%higher than that of the mixture containing aluminum and magnesium instead of beryllium,respectively.Moreover,the TNT equivalent of the Be-containing composition due to the overpressure in the nitrogen-filled explosion chamber is 1.66,while the equivalent calculated using an air shock wave-specific impulse at a distance of 2.5 m is equal to 1.69.The high values of these parameters confirm the high reactivity of beryllium in both the anaerobic and aerobic stages of the thermobaric explosion. 展开更多
关键词 Thermobaric explosives BERYLLIUM Heat of detonation Quasi-static overpressure blast wave parameters
下载PDF
Determination method of mesh size for numerical simulation of blast load in near-ground detonation
19
作者 Doudou Si Zuanfeng Pan Haipeng Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期111-125,共15页
In order to improve the overall resilience of the urban infrastructures, it is required to conduct blast resistant design for important building structures in the city. For complex terrain in the city, it is recommend... In order to improve the overall resilience of the urban infrastructures, it is required to conduct blast resistant design for important building structures in the city. For complex terrain in the city, it is recommended to determine the blast load on the structures via numerical simulation. Since the mesh size of the numerical model highly depends on the explosion scenario, there is no generally applicable approach for the mesh size selection. An efficient method to determine the mesh size of the numerical model of near-ground detonation based on explosion scenarios is proposed in this study. The effect of mesh size on the propagation of blast wave under different explosive weights was studied, and the correlations between the mesh size effect and the charge weight or the scaled distance was described. Based on the principle of the finite element method and Hopkinson-Cranz scaling law, a mesh size measurement unit related to the explosive weight was proposed as the criterion for determining the mesh size in the numerical simulation. Finally, the applicability of the method proposed in this paper was verified by comparing the results from numerical simulation and the explosion tests and was verified in AUTODYN. 展开更多
关键词 blast load Mesh size effect Numerical simulation Scaled mesh size VERIFICATION
下载PDF
Non-dimensional analysis on blast wave propagation in foam concrete:Minimum thickness to avoid stress enhancement
20
作者 Ya Yang Xiangzhen Kong Qin Fang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期30-46,共17页
Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress miti... Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress mitigation may happen when foam concrete is used as sacrificial claddings placed in the path of an incoming blast load.To investigate this interesting phenomenon,a one-dimensional difference model for blast wave propagation in foam concrete is firstly proposed and numerically solved by improving the second-order Godunov method.The difference model and numerical algorithm are validated against experimental results including both the stress mitigation and the stress enhancement.The difference model is then used to numerically analyze the blast wave propagation and deformation of material in which the effects of blast loads,stress-strain relation and length of foam concrete are considered.In particular,the concept of minimum thickness of foam concrete to avoid stress enhancement is proposed.Finally,non-dimensional analysis on the minimum thickness is conducted and an empirical formula is proposed by curve-fitting the numerical data,which can provide a reference for the application of foam concrete in defense engineering. 展开更多
关键词 Foam concrete blast wave propagation Non-dimensional analysis Stress enhancement
下载PDF
上一页 1 2 139 下一页 到第
使用帮助 返回顶部