期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Prediction of flyrock in open pit blasting operation using machine learning method 被引量:11
1
作者 Manoj Khandelwal M. Monjezi 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期313-316,共4页
Flyrock is one of the most hazardous events in blasting operation of surface mines. There are several empirical methods to predict flyrock. Low performance of such models is due to the complexity of flyrock analysis. ... Flyrock is one of the most hazardous events in blasting operation of surface mines. There are several empirical methods to predict flyrock. Low performance of such models is due to the complexity of flyrock analysis. Existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, the application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict flyrock in blasting operations of Soungun Copper Mine, Iran incorporating rock properties and blast design parameters using support vector machine (SVM) method. To investigate the suitability of this approach, the predictions by SVM have been compared with multivariate regression analysis (MVRA), too. Coefficient of determination (CoD) and mean absolute error (MAE) were taken as performance measures. It was found that CoD between measured and predicted flyrock was 0.948 and 0.440 by SVM and MVRA, respectively, whereas MAE between measured and predicted flyrock was 3.11 and 7.74 by SVM and MVRA, respectively. 展开更多
关键词 blasting Soungun Copper Mine flyrock Support vector machine MVRA
下载PDF
Advanced Machine Learning Methods for Prediction of Blast-Induced Flyrock Using Hybrid SVR Methods
2
作者 Ji Zhou Yijun Lu +3 位作者 Qiong Tian Haichuan Liu Mahdi Hasanipanah Jiandong Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1595-1617,共23页
Blasting in surface mines aims to fragment rock masses to a proper size.However,flyrock is an undesirable effect of blasting that can result in human injuries.In this study,support vector regression(SVR)is combined wi... Blasting in surface mines aims to fragment rock masses to a proper size.However,flyrock is an undesirable effect of blasting that can result in human injuries.In this study,support vector regression(SVR)is combined with four algorithms:gravitational search algorithm(GSA),biogeography-based optimization(BBO),ant colony optimization(ACO),and whale optimization algorithm(WOA)for predicting flyrock in two surface mines in Iran.Additionally,three other methods,including artificial neural network(ANN),kernel extreme learning machine(KELM),and general regression neural network(GRNN),are employed,and their performances are compared to those of four hybrid SVR models.After modeling,the measured and predicted flyrock values are validated with some performance indices,such as root mean squared error(RMSE).The results revealed that the SVR-WOA model has the most optimal accuracy,with an RMSE of 7.218,while the RMSEs of the KELM,GRNN,SVR-GSA,ANN,SVR-BBO,and SVR-ACO models are 10.668,10.867,15.305,15.661,16.239,and 18.228,respectively.Therefore,combining WOA and SVR can be a valuable tool for accurately predicting flyrock distance in surface mines. 展开更多
关键词 flyrock induced by blasting optimization algorithms SVR GRNN
下载PDF
Prediction of blast-induced flyrock in Indian limestone mines using neural networks 被引量:9
3
作者 R.Trivedi T.N.Singh A.K.Raina 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第5期447-454,共8页
Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has chal... Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has challenged the management to go for safe blasts with special reference to opencast mining.The study aims to predict the distance covered by the flyrock induced by blasting using artificial neuralnetwork (ANN) and multi-variate regression analysis (MVRA) for better assessment. Blast design andgeotechnical parameters, such as linear charge concentration, burden, stemming length, specific charge,unconfined compressive strength (UCS), and rock quality designation (RQD), have been selected as inputparameters and flyrock distance used as output parameter. ANN has been trained using 95 datasets ofexperimental blasts conducted in 4 opencast limestone mines in India. Thirty datasets have been used fortesting and validation of trained neural network. Flyrock distances have been predicted by ANN, MVRA,as well as further calculated using motion analysis of flyrock projectiles and compared with the observeddata. Back propagation neural network (BPNN) has been proven to be a superior predictive tool whencompared with MVRA. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Artificial neural network(ANN) blasting Opencast mining Burden Stemming Specific charge flyrock
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部