Destress blasting(DB)implemented along the perimeter of safety pillars is a special application of destressing in coal longwall mining.The goal is to separate relatively more deformed mined areas from safety pillars,s...Destress blasting(DB)implemented along the perimeter of safety pillars is a special application of destressing in coal longwall mining.The goal is to separate relatively more deformed mined areas from safety pillars,such as shaft pillars or cross-cut pillars,to reduce the transfer of high stresses to the protective pillar.This case study aims to numerically simulate selected destress blasts in the Czech part of the Upper Silesian Coal Basin and examine its impact on stress transfer to the safety pillar area.To separate the area between the protective pillar and the longwall(LW),two fans of five 93-mm blast holes(length of 93e100 m)were drilled from the gate roads into the overburden strata.Each set of blast holes was fired separately in two stages without time delay.The explosive charge(gelatin-type of explosive)of each stage is 3450 kg.The two DB stages were fired when the longwall face was approximately 158 m and 152 m away from the blast.A 3D mine-wide model is built and validated with in situ stress measured with hydrofracturing.Mining and destressing in three 5-m thick coal seams are simulated in the region.Numerical modeling of DB is successfully conducted using a rock fragmentation factor a of 0.05 and a stress reduction/dissipation factor β of 0.95.Buffering of transfer of additional stress from the mining area into the safety pillar is evaluated by comparison of yielding volume before and after DB.It is shown that yielding volume drops after DB by nearly 80%in the area of the destressing panel and near the safety shaft pillar.展开更多
In this paper, selected methods of destress blasting efficiency assessment are presented, and novel quantitative methods based on in situ seismic measurements are proposed. The newly formulated solution combines two d...In this paper, selected methods of destress blasting efficiency assessment are presented, and novel quantitative methods based on in situ seismic measurements are proposed. The newly formulated solution combines two different approaches. The first, which is useful mostly for the near-field seismic analyses, is based on the analysis of seismic amplitude characteristics, and the second, relevant for farfield evaluation, is extended by the duration and frequency of the seismic wave. Both approaches are based on the seismic analyses of the waveforms generated by blasting recorded by the local seismic network. The proposed solutions are tested and validated in deep underground mines in Poland in which the room-and-pillar mining method is applied. Based on performed analysis, it is shown that both methods may be used as a rockburst hazard control in underground mines. However, developed methods may also be successfully implemented in other engineering practices, including the assessment of seismic vibrations in open pits and quarries.展开更多
To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are govern...To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are governed by a damage variable. By using the proposed material model, damage and fragmentation of a typical masonry wall under blast loading at different scaled distances is calculated. The hazard level of the masonry wall to blast loading is evaluated by analyzing the numerical results.展开更多
文摘Destress blasting(DB)implemented along the perimeter of safety pillars is a special application of destressing in coal longwall mining.The goal is to separate relatively more deformed mined areas from safety pillars,such as shaft pillars or cross-cut pillars,to reduce the transfer of high stresses to the protective pillar.This case study aims to numerically simulate selected destress blasts in the Czech part of the Upper Silesian Coal Basin and examine its impact on stress transfer to the safety pillar area.To separate the area between the protective pillar and the longwall(LW),two fans of five 93-mm blast holes(length of 93e100 m)were drilled from the gate roads into the overburden strata.Each set of blast holes was fired separately in two stages without time delay.The explosive charge(gelatin-type of explosive)of each stage is 3450 kg.The two DB stages were fired when the longwall face was approximately 158 m and 152 m away from the blast.A 3D mine-wide model is built and validated with in situ stress measured with hydrofracturing.Mining and destressing in three 5-m thick coal seams are simulated in the region.Numerical modeling of DB is successfully conducted using a rock fragmentation factor a of 0.05 and a stress reduction/dissipation factor β of 0.95.Buffering of transfer of additional stress from the mining area into the safety pillar is evaluated by comparison of yielding volume before and after DB.It is shown that yielding volume drops after DB by nearly 80%in the area of the destressing panel and near the safety shaft pillar.
基金the Horizon 2020 project funded by the European Union on“Next Generation Carbon Neutral Pilots for Smart Intelligent Mining Systems(NEXGEN-SIMS)”(Grant No.101003591)。
文摘In this paper, selected methods of destress blasting efficiency assessment are presented, and novel quantitative methods based on in situ seismic measurements are proposed. The newly formulated solution combines two different approaches. The first, which is useful mostly for the near-field seismic analyses, is based on the analysis of seismic amplitude characteristics, and the second, relevant for farfield evaluation, is extended by the duration and frequency of the seismic wave. Both approaches are based on the seismic analyses of the waveforms generated by blasting recorded by the local seismic network. The proposed solutions are tested and validated in deep underground mines in Poland in which the room-and-pillar mining method is applied. Based on performed analysis, it is shown that both methods may be used as a rockburst hazard control in underground mines. However, developed methods may also be successfully implemented in other engineering practices, including the assessment of seismic vibrations in open pits and quarries.
文摘To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are governed by a damage variable. By using the proposed material model, damage and fragmentation of a typical masonry wall under blast loading at different scaled distances is calculated. The hazard level of the masonry wall to blast loading is evaluated by analyzing the numerical results.