Bled air from the high pressure compressor takes up 3%—5% in the air system.However,there are not many studies on the compressor performance after bleeding.By analyzing the low-speed single-stage compressors,six blee...Bled air from the high pressure compressor takes up 3%—5% in the air system.However,there are not many studies on the compressor performance after bleeding.By analyzing the low-speed single-stage compressors,six bleeding structures are presented according to their influence mechanism on the compressor performance,and five kinds of bleeding rate are applied to one of the structures.A numerical simulation is performed to study the influence of bleeding rates and structures on the compressor performance.The results show that for the stators with the large flow separation in the corner,bleeding a small amount of air from the end-wall region can improve the total pressure increase and the stability margin.Moreover there is an optimum value of the bleeding rate in the stator casing.展开更多
The gridless method coupled with finite rate chemistry model is employed to simulate the external combustion flow fields of M864 base bleed projectile. The fluid dynamics process is described by Euler Equation in 2-D ...The gridless method coupled with finite rate chemistry model is employed to simulate the external combustion flow fields of M864 base bleed projectile. The fluid dynamics process is described by Euler Equation in 2-D axisymmetric coordinate. The numerical method is based on least-square gridless method,and the inviscid flux is calculated by multi-component HLLC( Harten-Lax-van Leer-Contact) scheme,and a H2-CO reaction mechanism involving 9 species and 11 reactions is used. The computations are performed for the full projectile configuration of Ma = 1. 5,2,and 3. The hot air injection cases and inert cases are simulated for comparison. The numerical results show that due to the combustion in the weak region,the recirculation zone enlarges and moves downstream,the base pressure increases and the total drag force coefficient decreases. At Ma = 3. 0,the rear stagnation point shifts downstream approximate 0. 26 caliber,and the base pressure increases about 53. 4%,and the total drag force coefficient decreases to 0. 182 which agrees well with the trajectory model prediction. Due to neglecting the effects of viscosity and turbulence,there exists a certain difference at Ma = 1. 5,2. 0.展开更多
基金Supported by the National Natural Science Foundation of China(60934001)~~
文摘Bled air from the high pressure compressor takes up 3%—5% in the air system.However,there are not many studies on the compressor performance after bleeding.By analyzing the low-speed single-stage compressors,six bleeding structures are presented according to their influence mechanism on the compressor performance,and five kinds of bleeding rate are applied to one of the structures.A numerical simulation is performed to study the influence of bleeding rates and structures on the compressor performance.The results show that for the stators with the large flow separation in the corner,bleeding a small amount of air from the end-wall region can improve the total pressure increase and the stability margin.Moreover there is an optimum value of the bleeding rate in the stator casing.
文摘The gridless method coupled with finite rate chemistry model is employed to simulate the external combustion flow fields of M864 base bleed projectile. The fluid dynamics process is described by Euler Equation in 2-D axisymmetric coordinate. The numerical method is based on least-square gridless method,and the inviscid flux is calculated by multi-component HLLC( Harten-Lax-van Leer-Contact) scheme,and a H2-CO reaction mechanism involving 9 species and 11 reactions is used. The computations are performed for the full projectile configuration of Ma = 1. 5,2,and 3. The hot air injection cases and inert cases are simulated for comparison. The numerical results show that due to the combustion in the weak region,the recirculation zone enlarges and moves downstream,the base pressure increases and the total drag force coefficient decreases. At Ma = 3. 0,the rear stagnation point shifts downstream approximate 0. 26 caliber,and the base pressure increases about 53. 4%,and the total drag force coefficient decreases to 0. 182 which agrees well with the trajectory model prediction. Due to neglecting the effects of viscosity and turbulence,there exists a certain difference at Ma = 1. 5,2. 0.