Self-Compacting concrete is a concrete that is able to flow and consolidate under its own weight, completely fill the formwork even in the presence of dense reinforcement, whilst maintaining homogeneity and without th...Self-Compacting concrete is a concrete that is able to flow and consolidate under its own weight, completely fill the formwork even in the presence of dense reinforcement, whilst maintaining homogeneity and without the need for any additional compaction. Self-Compacting concrete is achieved by using high proportions of powder content and super?plasticizers. Due to this, pronounced thermal cracking is anticipated. Thermal cracking in concrete structures is of great concern. The objective of this research is to carry out experiments and investigate fresh and hardened properties of SCC developed using a blend of ordinary Portland cement and ground granulated blast furnace slag (GGBFS), to evaluate the applicability of Japan Concrete Institute (JCI) model?equations and?to find out any similarities and differences between Self-?Compacting concrete and normal vibrated concrete—Portland blast furnace slag concrete class B. Thermal stress analysis of the proposed Self-Compacting concrete and normal vibrated concretes were investigated by simulation using 3D FEM analysis. To carry out these objectives, concrete properties such as autogenous shrinkage, adiabatic temperature rise, drying shrinkage, modulus of elasticity, splitting tensile strength and compressive strength were determined through experiments. From experimental results, it was observed that except for the fresh properties, the hardened properties of Self-Compacting exhibit similar characteristics to those of normal vibrated concrete at almost similar water to binder ratios. It was also established that Self-Compacting concrete at W/B of 32% with a 50% replacement of ground granulated blast furnace slag has better thermal cracking resistance than SCC with 30% GGBFS replacement. It is also found that provided the relevant constants are derived from experimental data, JCI model equations can be applied successfully to evaluate hardened properties of Self-Compacting concrete.展开更多
This paper deals with the effect of blended cement and natural latex copolymer to static and dynamic properties of polymer modified concrete. The polymer was used copolymer of natural latex methacrylate (KOLAM) and co...This paper deals with the effect of blended cement and natural latex copolymer to static and dynamic properties of polymer modified concrete. The polymer was used copolymer of natural latex methacrylate (KOLAM) and copolymer of natural latex styrene (KOLAS) with composition of 1%, 5%, and 10% w/w of weight of blended cement in concrete mixture. They are tested for compressive strength, flexural strength, splitting tensile strength, and modulus elasticity for static analysis, and impact load and energy dissipation profile for dynamic analysis. The result shows that KOLAM with concentration 1% give better performance in static and dynamic properties. The KOLAM 1% gives improvement in flexural strength, splitting tensile strength and modulus elasticity about 4%, 13% and 3% compared to normal concrete. And for dynamic properties, KOLAM 1% could reduce impact load up to 35% and improve energy dissipation capacity about 45% compared to normal concrete. The concentration of KOLAM higher than 1% resulting negative effect to static and dynamic properties, except modulus of elasticity. For KOLAS, there were no positive trends of static and dynamic properties.展开更多
The poor quality of Kenyan in situ concrete has necessitated research to establish the properties of the ingredient materials and their influence on the troubling rate of failure of reinforced concrete structures in t...The poor quality of Kenyan in situ concrete has necessitated research to establish the properties of the ingredient materials and their influence on the troubling rate of failure of reinforced concrete structures in the country during construction and usage. The compressive strength of concrete relies on the properties of the constituent materials, proportions of the mixture, workmanship, compaction method and curing conditions. This paper outlines findings of an experimental investigation on the properties of Kenyan concrete ingredient materials and their influence on the compressive strength of concrete in Kenya. Three types of cements (42.5N, 32.5R, 32.5N) from six different cement manufacturers and fine aggregates from three different regions in the country were used during the study. Cements and aggregates chemical analysis was done using the Atomic Absorption Spectrometer machine while the physical and the mechanical properties were checked based on the British Standards. The British DOE concrete mix design method was used to generate the concrete mix proportion and concrete was tested for early and ultimate compressive strengths at 7, 14 and 28 days. It was observed that the different cement brands have varying properties with CEM A having the highest ultimate compressive and flexural strengths. It was further noted that aggregates from the coastal region produced concrete of higher compressive strengths. When the commonly used mix design method was adopted, blended Portland cements produced concrete with ultimate compressive strengths lower than the designed target strengths. The study therefore recommends the development of a concrete mix design procedure for blended cement concrete production in Kenya.展开更多
There are numerous methods and additives available to improve the durability and quality of road bitumen. A coal tar obtained by coal coking was distilled in a laboratory into fractions of initial boiling point IBP-18...There are numerous methods and additives available to improve the durability and quality of road bitumen. A coal tar obtained by coal coking was distilled in a laboratory into fractions of initial boiling point IBP-180℃ (gasoline-like fuel), 180℃ - 360℃ (diesel-like fuel), and >360℃ (residue or coal tar pitch). The coal tar pitch was added into road bitumen by up to 1 - 5 wt% and investigated the alteration of physical and chemical properties. The physico-mechanical properties of coal tar pitch and bitumen blends, as well as the chemical group composition, were determined using standard techniques (MNS) and the SARA method, respectively. Results of 3% coal tar pitch addition into bitumen enhanced ductility by 12.4% and softening point by 1.6℃. We found that blending with bitumen coal tar pitch as a modifier could improve bitumen properties.展开更多
In recent years, energy-retrofitting is becoming an imperative aim for existing buildings worldwide and increased interest has focused on the development of nanoparticle blended concretes with adequate mechanical...In recent years, energy-retrofitting is becoming an imperative aim for existing buildings worldwide and increased interest has focused on the development of nanoparticle blended concretes with adequate mechanical properties and durability performance, through the optimization of concrete permeability and the incorporation of the proper nanoparticle type in the concrete matrix. In order to investigate the potential use of nanocomposites as dense barriers against the permeation of liquids into the concrete, three types of nanoparticles including Zinc Oxide (ZnO), Magnesium Oxide (MgO), and composite nanoparticles were used in the present study as partial replacement of cement. Besides, the effect of adding these nanoparticles on both pore structure and mechanical strengths of the concrete at different ages was determined, and scanning electron microscopy (SEM) images were then used to illustrate the uniformity dispersion of nanoparticles in cement paste. It was demonstrated that the addition of a small number of nanoparticles effectively enhances the mechanical properties of concrete and consequently reduces the extent of the water permeation front. Finally, the behavioral models using Genetic Algorithm (GA) programming were developed to describe the time-dependent behavioral characteristics of nanoparticle blended concrete samples in various compressive and tensile stress states at different ages.展开更多
Extensive growth in the developing countries due to infrastructure development is resulting into massive consumption of concrete thereby increasing the demand on concrete materials. Quite large amounts of fine aggrega...Extensive growth in the developing countries due to infrastructure development is resulting into massive consumption of concrete thereby increasing the demand on concrete materials. Quite large amounts of fine aggregates are required for concrete in developing countries thus shortages of quality river sand is putting pressure on availability of fine aggregates. To fulfill the high demand of fine aggregates, a search for alternative materials is in process. Stone crushing and processing industry is a large industry which generates large amounts of stone dust and slurry which is a waste produced from this process. Tons of such waste generated has no useful purpose except as landfill material. Some preliminary studies have been conducted into use of marble/ limestone waste for use in concrete [1] [2].?This study aims at using stone dust as partial replacement of sand in concrete to observe its effects on workability and other mechanical properties. This would result in useful consumption of this waste product thereby eliminating environmental issues related to its disposal. Partial replacement of 10% and 20% sand replacement with stone dust is carried out with the use of self-compacting concrete with blended cement. Blended cement used contains 50% rice husk ash and 50% Portland cement. Such high strength SCC with blended cement containing 50% rice husk ash and 50% Portland cement has already been tested to provide better quality concrete [3]. Wide ranging investigations covering most aspects of mechanical behavior and permeability were carried out for various mixes for compressive strengths of 60?MPa & 80?MPa. Compressive strengths of high strength SCC with blended cements and 10% and 20% replacement of sand with stone dust for 60?MPa and 80?MPa were observed to be higher by about 10% to 13% than the control specimen. Higher elastic moduli and reduced permeability were observed along with better sulphate and acid resistance. Better strengths and improved durability of such high strength SCC make it a more acceptable material for major construction projects thereby reducing the burden on environment and use of such waste product for a useful purpose promoting sustainable construction.展开更多
The Scanning Electron Microscopy (SEM) and Optical Microscopy (OM) with integrated digital camera are techniques that are used in the present investigation, for the morphological characterization of a new composite ma...The Scanning Electron Microscopy (SEM) and Optical Microscopy (OM) with integrated digital camera are techniques that are used in the present investigation, for the morphological characterization of a new composite material called “organic polymer concrete” in which microparticles added fibers and polyethylene terephthalate (PET) recycling mechanically (RM). Polymer concrete (PC) is a new composite material (MC) in the application considered as an alternative material of construction in which reinforcement particles are recycled polymers which have approximately the same dimensions in all directions. Therefore, the particles can be rods, spheres, chips and many other shapes whose appearance reasons are about 10 microns. These MC, the size, shape and distribution and the ratio and the modulus of the particles affect the properties of the material.展开更多
Concrete is the most widely used construction material in the world. The situation in the country is not an exception as most of the infrastructures in Kenya such as buildings, bridges, concrete drainage among others,...Concrete is the most widely used construction material in the world. The situation in the country is not an exception as most of the infrastructures in Kenya such as buildings, bridges, concrete drainage among others, are constructed using concrete. Sadly, the failure of buildings and other concrete structures is very common in Kenya. Blended Portland cement type 32.5 N/mm<sup>2</sup> is the most widely used concrete binder material and is found in all parts of the country. Despite blended cement CEM 32.5 being the most commonly used cement type in construction industry in Kenya and most developing countries as a result of its low price and availability locally, its strength gain has been proven to be lower compared to when other types of cement are used due to quantity of pozzolanic material added to the blend. This paper outlines findings of an experimental investigation on the use of cypress tree extract as an accelerator to enhance rate of gain of strength on Kenyan blended cements. Six different blended cement brands locally available were used during the study. Cement chemical analysis was done using X-ray diffraction method while for the cypress extract, Atomic Absorption Spectrometer machine was used. Physical and mechanical properties were checked based on the British standards. The generation of the concrete mix design was done using the British DOE method and concrete was tested for the compressive strength at 7, 14, 21, 28, 56 and 90 days. It was observed that 15% dosage of the extract expressed as a mass percentage of the cement content gives the most improved compressive strength of concrete, 10.4% at 7 days and 9.5% at 28 days hence the optimum. It was further noted that when Cypress tree extract is used as an accelerator in the mix, the blended cement concrete achieves the design strength at 27 days saving 10 days of the project duration compared to when no accelerator is used while the ultimate strength is achieved at 67 days. The study therefore recommends the use of the cypress tree bark extract at a dosage of 15%, by mass, of the cement content as an accelerator when the structure is to be loaded at 28 days and waiting up to 39 days before loading the structure if no accelerator is used for blended cement concrete.展开更多
Many studies on the mixture design of fly ash and slag ternary blended concrete have been conducted.However,these previous studies did not consider the effects of climate change,such as acceleration in the deteriorati...Many studies on the mixture design of fly ash and slag ternary blended concrete have been conducted.However,these previous studies did not consider the effects of climate change,such as acceleration in the deterioration of durability,on mixture design.This study presents a procedure for the optimal mixture design of termary blended concrete considering climate change and durability.First,the costs of CO2 emissions and material are calculated based on the concrete mixture and unit prices.Total cost is equal to the sum of material cost and CO2 emissions cost,and is set as the objective function of the optimization.Second,strength,slump,carbonation,and chloride ingress models are used to evaluate concrete properties.The effect of different climate change scenarios on carbonation and chloride ingress is considered.A genetic algorithm is used to find the optimal mixture considering various constraints.Third,ilustrative examples are shown for mixture design of ternary blended concrete.The analysis results show that for termary blended concrete exposed to an atmospheric environment,a rich mix is necessary to meet the challenge of climate change,and for termary blended concrete exposed to a marine environment,the impact of climate change on mixture design is marginal.展开更多
文摘Self-Compacting concrete is a concrete that is able to flow and consolidate under its own weight, completely fill the formwork even in the presence of dense reinforcement, whilst maintaining homogeneity and without the need for any additional compaction. Self-Compacting concrete is achieved by using high proportions of powder content and super?plasticizers. Due to this, pronounced thermal cracking is anticipated. Thermal cracking in concrete structures is of great concern. The objective of this research is to carry out experiments and investigate fresh and hardened properties of SCC developed using a blend of ordinary Portland cement and ground granulated blast furnace slag (GGBFS), to evaluate the applicability of Japan Concrete Institute (JCI) model?equations and?to find out any similarities and differences between Self-?Compacting concrete and normal vibrated concrete—Portland blast furnace slag concrete class B. Thermal stress analysis of the proposed Self-Compacting concrete and normal vibrated concretes were investigated by simulation using 3D FEM analysis. To carry out these objectives, concrete properties such as autogenous shrinkage, adiabatic temperature rise, drying shrinkage, modulus of elasticity, splitting tensile strength and compressive strength were determined through experiments. From experimental results, it was observed that except for the fresh properties, the hardened properties of Self-Compacting exhibit similar characteristics to those of normal vibrated concrete at almost similar water to binder ratios. It was also established that Self-Compacting concrete at W/B of 32% with a 50% replacement of ground granulated blast furnace slag has better thermal cracking resistance than SCC with 30% GGBFS replacement. It is also found that provided the relevant constants are derived from experimental data, JCI model equations can be applied successfully to evaluate hardened properties of Self-Compacting concrete.
文摘This paper deals with the effect of blended cement and natural latex copolymer to static and dynamic properties of polymer modified concrete. The polymer was used copolymer of natural latex methacrylate (KOLAM) and copolymer of natural latex styrene (KOLAS) with composition of 1%, 5%, and 10% w/w of weight of blended cement in concrete mixture. They are tested for compressive strength, flexural strength, splitting tensile strength, and modulus elasticity for static analysis, and impact load and energy dissipation profile for dynamic analysis. The result shows that KOLAM with concentration 1% give better performance in static and dynamic properties. The KOLAM 1% gives improvement in flexural strength, splitting tensile strength and modulus elasticity about 4%, 13% and 3% compared to normal concrete. And for dynamic properties, KOLAM 1% could reduce impact load up to 35% and improve energy dissipation capacity about 45% compared to normal concrete. The concentration of KOLAM higher than 1% resulting negative effect to static and dynamic properties, except modulus of elasticity. For KOLAS, there were no positive trends of static and dynamic properties.
文摘The poor quality of Kenyan in situ concrete has necessitated research to establish the properties of the ingredient materials and their influence on the troubling rate of failure of reinforced concrete structures in the country during construction and usage. The compressive strength of concrete relies on the properties of the constituent materials, proportions of the mixture, workmanship, compaction method and curing conditions. This paper outlines findings of an experimental investigation on the properties of Kenyan concrete ingredient materials and their influence on the compressive strength of concrete in Kenya. Three types of cements (42.5N, 32.5R, 32.5N) from six different cement manufacturers and fine aggregates from three different regions in the country were used during the study. Cements and aggregates chemical analysis was done using the Atomic Absorption Spectrometer machine while the physical and the mechanical properties were checked based on the British Standards. The British DOE concrete mix design method was used to generate the concrete mix proportion and concrete was tested for early and ultimate compressive strengths at 7, 14 and 28 days. It was observed that the different cement brands have varying properties with CEM A having the highest ultimate compressive and flexural strengths. It was further noted that aggregates from the coastal region produced concrete of higher compressive strengths. When the commonly used mix design method was adopted, blended Portland cements produced concrete with ultimate compressive strengths lower than the designed target strengths. The study therefore recommends the development of a concrete mix design procedure for blended cement concrete production in Kenya.
文摘There are numerous methods and additives available to improve the durability and quality of road bitumen. A coal tar obtained by coal coking was distilled in a laboratory into fractions of initial boiling point IBP-180℃ (gasoline-like fuel), 180℃ - 360℃ (diesel-like fuel), and >360℃ (residue or coal tar pitch). The coal tar pitch was added into road bitumen by up to 1 - 5 wt% and investigated the alteration of physical and chemical properties. The physico-mechanical properties of coal tar pitch and bitumen blends, as well as the chemical group composition, were determined using standard techniques (MNS) and the SARA method, respectively. Results of 3% coal tar pitch addition into bitumen enhanced ductility by 12.4% and softening point by 1.6℃. We found that blending with bitumen coal tar pitch as a modifier could improve bitumen properties.
文摘In recent years, energy-retrofitting is becoming an imperative aim for existing buildings worldwide and increased interest has focused on the development of nanoparticle blended concretes with adequate mechanical properties and durability performance, through the optimization of concrete permeability and the incorporation of the proper nanoparticle type in the concrete matrix. In order to investigate the potential use of nanocomposites as dense barriers against the permeation of liquids into the concrete, three types of nanoparticles including Zinc Oxide (ZnO), Magnesium Oxide (MgO), and composite nanoparticles were used in the present study as partial replacement of cement. Besides, the effect of adding these nanoparticles on both pore structure and mechanical strengths of the concrete at different ages was determined, and scanning electron microscopy (SEM) images were then used to illustrate the uniformity dispersion of nanoparticles in cement paste. It was demonstrated that the addition of a small number of nanoparticles effectively enhances the mechanical properties of concrete and consequently reduces the extent of the water permeation front. Finally, the behavioral models using Genetic Algorithm (GA) programming were developed to describe the time-dependent behavioral characteristics of nanoparticle blended concrete samples in various compressive and tensile stress states at different ages.
文摘Extensive growth in the developing countries due to infrastructure development is resulting into massive consumption of concrete thereby increasing the demand on concrete materials. Quite large amounts of fine aggregates are required for concrete in developing countries thus shortages of quality river sand is putting pressure on availability of fine aggregates. To fulfill the high demand of fine aggregates, a search for alternative materials is in process. Stone crushing and processing industry is a large industry which generates large amounts of stone dust and slurry which is a waste produced from this process. Tons of such waste generated has no useful purpose except as landfill material. Some preliminary studies have been conducted into use of marble/ limestone waste for use in concrete [1] [2].?This study aims at using stone dust as partial replacement of sand in concrete to observe its effects on workability and other mechanical properties. This would result in useful consumption of this waste product thereby eliminating environmental issues related to its disposal. Partial replacement of 10% and 20% sand replacement with stone dust is carried out with the use of self-compacting concrete with blended cement. Blended cement used contains 50% rice husk ash and 50% Portland cement. Such high strength SCC with blended cement containing 50% rice husk ash and 50% Portland cement has already been tested to provide better quality concrete [3]. Wide ranging investigations covering most aspects of mechanical behavior and permeability were carried out for various mixes for compressive strengths of 60?MPa & 80?MPa. Compressive strengths of high strength SCC with blended cements and 10% and 20% replacement of sand with stone dust for 60?MPa and 80?MPa were observed to be higher by about 10% to 13% than the control specimen. Higher elastic moduli and reduced permeability were observed along with better sulphate and acid resistance. Better strengths and improved durability of such high strength SCC make it a more acceptable material for major construction projects thereby reducing the burden on environment and use of such waste product for a useful purpose promoting sustainable construction.
文摘The Scanning Electron Microscopy (SEM) and Optical Microscopy (OM) with integrated digital camera are techniques that are used in the present investigation, for the morphological characterization of a new composite material called “organic polymer concrete” in which microparticles added fibers and polyethylene terephthalate (PET) recycling mechanically (RM). Polymer concrete (PC) is a new composite material (MC) in the application considered as an alternative material of construction in which reinforcement particles are recycled polymers which have approximately the same dimensions in all directions. Therefore, the particles can be rods, spheres, chips and many other shapes whose appearance reasons are about 10 microns. These MC, the size, shape and distribution and the ratio and the modulus of the particles affect the properties of the material.
文摘Concrete is the most widely used construction material in the world. The situation in the country is not an exception as most of the infrastructures in Kenya such as buildings, bridges, concrete drainage among others, are constructed using concrete. Sadly, the failure of buildings and other concrete structures is very common in Kenya. Blended Portland cement type 32.5 N/mm<sup>2</sup> is the most widely used concrete binder material and is found in all parts of the country. Despite blended cement CEM 32.5 being the most commonly used cement type in construction industry in Kenya and most developing countries as a result of its low price and availability locally, its strength gain has been proven to be lower compared to when other types of cement are used due to quantity of pozzolanic material added to the blend. This paper outlines findings of an experimental investigation on the use of cypress tree extract as an accelerator to enhance rate of gain of strength on Kenyan blended cements. Six different blended cement brands locally available were used during the study. Cement chemical analysis was done using X-ray diffraction method while for the cypress extract, Atomic Absorption Spectrometer machine was used. Physical and mechanical properties were checked based on the British standards. The generation of the concrete mix design was done using the British DOE method and concrete was tested for the compressive strength at 7, 14, 21, 28, 56 and 90 days. It was observed that 15% dosage of the extract expressed as a mass percentage of the cement content gives the most improved compressive strength of concrete, 10.4% at 7 days and 9.5% at 28 days hence the optimum. It was further noted that when Cypress tree extract is used as an accelerator in the mix, the blended cement concrete achieves the design strength at 27 days saving 10 days of the project duration compared to when no accelerator is used while the ultimate strength is achieved at 67 days. The study therefore recommends the use of the cypress tree bark extract at a dosage of 15%, by mass, of the cement content as an accelerator when the structure is to be loaded at 28 days and waiting up to 39 days before loading the structure if no accelerator is used for blended cement concrete.
基金This research was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning(No.2015R1A5A1037548)an NRF Grant(NRF-2020R1A2C4002093)This study was supported by a 2018 Research grant(POINT)from Kangwon National University.
文摘Many studies on the mixture design of fly ash and slag ternary blended concrete have been conducted.However,these previous studies did not consider the effects of climate change,such as acceleration in the deterioration of durability,on mixture design.This study presents a procedure for the optimal mixture design of termary blended concrete considering climate change and durability.First,the costs of CO2 emissions and material are calculated based on the concrete mixture and unit prices.Total cost is equal to the sum of material cost and CO2 emissions cost,and is set as the objective function of the optimization.Second,strength,slump,carbonation,and chloride ingress models are used to evaluate concrete properties.The effect of different climate change scenarios on carbonation and chloride ingress is considered.A genetic algorithm is used to find the optimal mixture considering various constraints.Third,ilustrative examples are shown for mixture design of ternary blended concrete.The analysis results show that for termary blended concrete exposed to an atmospheric environment,a rich mix is necessary to meet the challenge of climate change,and for termary blended concrete exposed to a marine environment,the impact of climate change on mixture design is marginal.