As a basis of modern petrology,the equilibrium relations describing the melting of granite were established mainly on melting experiments of Powder samples.Such experiments,however,have serious limitations in providin...As a basis of modern petrology,the equilibrium relations describing the melting of granite were established mainly on melting experiments of Powder samples.Such experiments,however,have serious limitations in providing information about the variations in compositional and fabric features of the minerals and in the composition and distribution of the melt.Our experiments using massive samples indicate that melt occure mainly at the quartz-plagioclase and quartz-potash feldspar boundaries and the composition of the melt is dependent on local characteristics in the melting system,showing no correlation with the bulk composition of the rock samples.At lower temperatures(740-760℃,0.2GPa),the melt plots at or near the eutectic point in Q-Ab-Or-An-H2O diagram,indicating equilibrium melting.At higher temperatures(790-800℃,0.2GPa)the melt becomes lower in SiO2 and higher in Na2O,deviating makedly from the eutectic line but without disappearance of any mineral phase,suggesting a non-equilibrium process.It is obvious that the phase-equilibrium relations in natural massive granites may be greatly different from those deduced from powder experiments.展开更多
Ⅰ. EXPERIMENTS AND RESULTS All the samples were Fabricated by the MTG method which has been described elsewhere. However, some modifications on MTG were made, i. e. the precursor material ofsample 1~# was cooled more...Ⅰ. EXPERIMENTS AND RESULTS All the samples were Fabricated by the MTG method which has been described elsewhere. However, some modifications on MTG were made, i. e. the precursor material ofsample 1~# was cooled more slowly than sample 3~#. Sample 2~#= was made to differ展开更多
高钛渣中各元素分析一般采用化学法分析[1],操作繁琐、流程长、效率低、并且使用大量酸碱等危险化学试剂,本方法采用熔片制样,消除高钛渣中钛的矿物结构效应,降低基体效应的影响,研究熔样条件,确定仪器测量的最佳参数为Axions型X射线荧...高钛渣中各元素分析一般采用化学法分析[1],操作繁琐、流程长、效率低、并且使用大量酸碱等危险化学试剂,本方法采用熔片制样,消除高钛渣中钛的矿物结构效应,降低基体效应的影响,研究熔样条件,确定仪器测量的最佳参数为Axions型X射线荧光光谱仪(荷兰帕纳科公司),最大功率4.0 KW,最大电压60KV,最大电流125 m A,超尖锐耙X光管。由于高钛渣国家标准样品中定值的元素少,为了增加高钛渣标样中可测定元素,以人工合成配置一系列具有一定梯度含量的人工标准样品,用理论α系数及干扰曲线法进行基体效应和谱线重叠干扰的校正,开发了用X射线荧光光谱测定高钛渣中除Ti外的常量和微量元素的方法。用该方法测定结果与化学值相符。10次制样测量,各元素的RSD≤1.00%。用X射线荧光光谱法快速测定高钛渣(Ti O_245%~95%)中主次量元素的分析方法。其中分析精密度都低于1%,熔片的重现性好,本方法对高钛渣国家标准物质进行检测与标准值基本相符,完全能够满足选冶流程样品的分析要求。该方法简便、快速、成本低、效率高。减少了分析化学样品时,使用的有毒试剂对环境的污染。展开更多
文摘As a basis of modern petrology,the equilibrium relations describing the melting of granite were established mainly on melting experiments of Powder samples.Such experiments,however,have serious limitations in providing information about the variations in compositional and fabric features of the minerals and in the composition and distribution of the melt.Our experiments using massive samples indicate that melt occure mainly at the quartz-plagioclase and quartz-potash feldspar boundaries and the composition of the melt is dependent on local characteristics in the melting system,showing no correlation with the bulk composition of the rock samples.At lower temperatures(740-760℃,0.2GPa),the melt plots at or near the eutectic point in Q-Ab-Or-An-H2O diagram,indicating equilibrium melting.At higher temperatures(790-800℃,0.2GPa)the melt becomes lower in SiO2 and higher in Na2O,deviating makedly from the eutectic line but without disappearance of any mineral phase,suggesting a non-equilibrium process.It is obvious that the phase-equilibrium relations in natural massive granites may be greatly different from those deduced from powder experiments.
基金Project supported by the National Natural Science FoundationNational Center for Research and Development on Superconductivity of China
文摘Ⅰ. EXPERIMENTS AND RESULTS All the samples were Fabricated by the MTG method which has been described elsewhere. However, some modifications on MTG were made, i. e. the precursor material ofsample 1~# was cooled more slowly than sample 3~#. Sample 2~#= was made to differ
文摘高钛渣中各元素分析一般采用化学法分析[1],操作繁琐、流程长、效率低、并且使用大量酸碱等危险化学试剂,本方法采用熔片制样,消除高钛渣中钛的矿物结构效应,降低基体效应的影响,研究熔样条件,确定仪器测量的最佳参数为Axions型X射线荧光光谱仪(荷兰帕纳科公司),最大功率4.0 KW,最大电压60KV,最大电流125 m A,超尖锐耙X光管。由于高钛渣国家标准样品中定值的元素少,为了增加高钛渣标样中可测定元素,以人工合成配置一系列具有一定梯度含量的人工标准样品,用理论α系数及干扰曲线法进行基体效应和谱线重叠干扰的校正,开发了用X射线荧光光谱测定高钛渣中除Ti外的常量和微量元素的方法。用该方法测定结果与化学值相符。10次制样测量,各元素的RSD≤1.00%。用X射线荧光光谱法快速测定高钛渣(Ti O_245%~95%)中主次量元素的分析方法。其中分析精密度都低于1%,熔片的重现性好,本方法对高钛渣国家标准物质进行检测与标准值基本相符,完全能够满足选冶流程样品的分析要求。该方法简便、快速、成本低、效率高。减少了分析化学样品时,使用的有毒试剂对环境的污染。