The Xiluodu(XLD)reservoir is the second largest reservoir in China and the largest in the Jinsha River basin.The occurrence of two M>5 earthquakes after reservoir impoundment has aroused great interest among seismo...The Xiluodu(XLD)reservoir is the second largest reservoir in China and the largest in the Jinsha River basin.The occurrence of two M>5 earthquakes after reservoir impoundment has aroused great interest among seismologists and plant operators.We comprehensively analyzed the seismicity of the XLD reservoir area using precise earthquake relocation results and focal mechanism solutions and found that the seismicity of this area was weak before impoundment.Following impoundment,earthquake activity increased significantly.The occurrence of M≥3.5 earthquakes within five years of impoundment also appear to be closely related to rapid rises and falls in water level,though this correlation weakened after five years because earthquake activity was far from the reservoir area.Earthquakes in the XLD reservoir area are clustered;near the dam(Area A),small faults are intermittently distributed along the river,while Area B is composed of multiple NW-trending left-lateral strikeslip faults and a thrust fault and Area C is composed of a NW-trending left-lateral strike-slip main fault and a nearly EWtrending right-lateral strike-slip minor fault.The geometries of the deep and the shallow parts of the NW-trending fault differ.Under the action of the NW-trending background stress field,a series of NW-trending left-lateral strike-slip faults and NE-trending thrust faults in critical stress states were dislocated due to the stress caused by reservoir impoundment.The two largest earthquakes in the XLD reservoir area were tectonic earthquakes that were directly triggered by impoundment.展开更多
We calculated the crustal stress field using the composite focal mechanism method based on the P-wave initial motion polarity data of the Tengchong volcanic area from January 2011 to April 2019 obtained from the Bulle...We calculated the crustal stress field using the composite focal mechanism method based on the P-wave initial motion polarity data of the Tengchong volcanic area from January 2011 to April 2019 obtained from the Bulletin of Seismological Observations of Chinese stations.The magnitude range of earthquakes used in this study is 0–4,and their magnitudes are mainly approximately 1.0.To investigate the infl uence of the source location on the stress fi eld and obtain reliable stress fi elds of the study area,we applied the double-diff erence algorithm to relocate the seismic events,obtaining more accurate and reliable relative positions of seismic events with a clearer seismic belt.On the basis of relocation results,the study on the stress fi eld along the fault zone was conducted,and the infl uence of seismic event position on the stress fi eld was analyzed.Results show that,fi rst,the current stress regime in the shallow crust of the Tengchong volcanic area is strike-slip faulting,the orientation of the principal compressive stress axis is NE–SW,the orientation of the principal extension stress axis is SE–NW,the principal compressive and extension stress axes are nearly horizontal,and the dip angle of intermediate principal stress axis is relatively large.This reflects that the volcanic and seismic activities in the Tengchong volcanic area are mainly controlled by the collision and squeezing eff ect of the Indian–Eurasian plate.It also refl ects that the current tensile action caused by deep magma activity has little infl uence on the shallow crustal stress field.Second,the stress field along fault zones reveals that there exist local stress fi elds,such as the thrust stress regime at the strike-slip fault terminal area,which is consistent with the compressional area at the intersection of conjugate strike-slip faults indicated by previous study.Third,the stress fi eld results are consistent,regardless of using the original location in the bulletin or the relocated location,indicating that the infl uence of the event location error can be neglected when there are suffi cient data and refl ecting the stability of the composite focal mechanism method.The findings can serve as a reference for investigating geological structure movement,seismic activities,and volcanic activities in the Tengchong volcanic area.展开更多
Cloud computing technology is used in traveling wave fault location,which establishes a new technology platform for multi-terminal traveling wave fault location in complicated power systems.In this paper,multi-termina...Cloud computing technology is used in traveling wave fault location,which establishes a new technology platform for multi-terminal traveling wave fault location in complicated power systems.In this paper,multi-terminal traveling wave fault location network is developed,and massive data storage,management,and algorithm realization are implemented in the cloud computing platform.Based on network topology structure,the section connecting points for any lines and corresponding detection placement in the loop are determined first.The loop is divided into different sections,in which the shortest transmission path for any of the fault points is directly and uniquely obtained.In order to minimize the number of traveling wave acquisition unit(TWU),multi-objective optimal configuration model for TWU is then set up based on network full observability.Finally,according to the TWU distribution,fault section can be located by using temporal correlation,and the final fault location point can be precisely calculated by fusing all the times recorded in TWU.PSCAD/EMTDC simulation results show that the proposed method can quickly,accurately,and reliably locate the fault point under limited TWU with optimal placement.展开更多
利用保护动作信息量的传统故障定位方法是在保护动作之后完成故障定位的,在时限上难以满足广域自适应后备保护的要求,特别在站用直流电源消失的情况下,传统方法很难定位出原发性故障。针对上述问题,作者基于广域测量系统(wide area meas...利用保护动作信息量的传统故障定位方法是在保护动作之后完成故障定位的,在时限上难以满足广域自适应后备保护的要求,特别在站用直流电源消失的情况下,传统方法很难定位出原发性故障。针对上述问题,作者基于广域测量系统(wide area measurement system,WAMS)的实时量测信息,提出应用模糊C均值法对广域信息数据构成的样本进行最优分类,从而定位出故障元件和故障区域的方法。仿真结果表明,该方法不仅能快速、准确地定位出原发性故障,同时能够界定出受故障影响明显的区域,而且满足广域自适应后备保护的时限性要求。展开更多
基金funded by the project of"The Seismogenesis and Discrimination Methods of Cascade Reservoir in the Lower reaches of Jinsha River"(JG/20023B)from the China Three Gorges Construction Engineering Corporationthe Fundamental Research Funds for the Institute of Earthquake Forecasting,China Earthquake Administration(Nos.2021IEF0603,CEAIEF2022030100)the Basic Research Program on Natural Science in Shaanxi Province(No.2021JM-600)。
文摘The Xiluodu(XLD)reservoir is the second largest reservoir in China and the largest in the Jinsha River basin.The occurrence of two M>5 earthquakes after reservoir impoundment has aroused great interest among seismologists and plant operators.We comprehensively analyzed the seismicity of the XLD reservoir area using precise earthquake relocation results and focal mechanism solutions and found that the seismicity of this area was weak before impoundment.Following impoundment,earthquake activity increased significantly.The occurrence of M≥3.5 earthquakes within five years of impoundment also appear to be closely related to rapid rises and falls in water level,though this correlation weakened after five years because earthquake activity was far from the reservoir area.Earthquakes in the XLD reservoir area are clustered;near the dam(Area A),small faults are intermittently distributed along the river,while Area B is composed of multiple NW-trending left-lateral strikeslip faults and a thrust fault and Area C is composed of a NW-trending left-lateral strike-slip main fault and a nearly EWtrending right-lateral strike-slip minor fault.The geometries of the deep and the shallow parts of the NW-trending fault differ.Under the action of the NW-trending background stress field,a series of NW-trending left-lateral strike-slip faults and NE-trending thrust faults in critical stress states were dislocated due to the stress caused by reservoir impoundment.The two largest earthquakes in the XLD reservoir area were tectonic earthquakes that were directly triggered by impoundment.
基金the National Scholarship Fundthe National Natural Science Foundation of China(Nos.41704053,42174074,41674055)the East China University of Technology Research Foundation for Advanced Talents(ECUT)(DHBK2019084)for financial support。
文摘We calculated the crustal stress field using the composite focal mechanism method based on the P-wave initial motion polarity data of the Tengchong volcanic area from January 2011 to April 2019 obtained from the Bulletin of Seismological Observations of Chinese stations.The magnitude range of earthquakes used in this study is 0–4,and their magnitudes are mainly approximately 1.0.To investigate the infl uence of the source location on the stress fi eld and obtain reliable stress fi elds of the study area,we applied the double-diff erence algorithm to relocate the seismic events,obtaining more accurate and reliable relative positions of seismic events with a clearer seismic belt.On the basis of relocation results,the study on the stress fi eld along the fault zone was conducted,and the infl uence of seismic event position on the stress fi eld was analyzed.Results show that,fi rst,the current stress regime in the shallow crust of the Tengchong volcanic area is strike-slip faulting,the orientation of the principal compressive stress axis is NE–SW,the orientation of the principal extension stress axis is SE–NW,the principal compressive and extension stress axes are nearly horizontal,and the dip angle of intermediate principal stress axis is relatively large.This reflects that the volcanic and seismic activities in the Tengchong volcanic area are mainly controlled by the collision and squeezing eff ect of the Indian–Eurasian plate.It also refl ects that the current tensile action caused by deep magma activity has little infl uence on the shallow crustal stress field.Second,the stress field along fault zones reveals that there exist local stress fi elds,such as the thrust stress regime at the strike-slip fault terminal area,which is consistent with the compressional area at the intersection of conjugate strike-slip faults indicated by previous study.Third,the stress fi eld results are consistent,regardless of using the original location in the bulletin or the relocated location,indicating that the infl uence of the event location error can be neglected when there are suffi cient data and refl ecting the stability of the composite focal mechanism method.The findings can serve as a reference for investigating geological structure movement,seismic activities,and volcanic activities in the Tengchong volcanic area.
基金the Key Project of Smart Grid Technology and Equipment of National Key Research and Development Plan of China(2016YFB0900600)Project supported by the National Natural Science Foundation Fund for Distinguished Young Scholars(51425701)+2 种基金the National Natural Science Foundation of China(51207013)the Hunan Province Natural Science Fund for Distinguished Young Scholars(2015JJ1001)the Education Department of Hunan Province Project(15C0032).
文摘Cloud computing technology is used in traveling wave fault location,which establishes a new technology platform for multi-terminal traveling wave fault location in complicated power systems.In this paper,multi-terminal traveling wave fault location network is developed,and massive data storage,management,and algorithm realization are implemented in the cloud computing platform.Based on network topology structure,the section connecting points for any lines and corresponding detection placement in the loop are determined first.The loop is divided into different sections,in which the shortest transmission path for any of the fault points is directly and uniquely obtained.In order to minimize the number of traveling wave acquisition unit(TWU),multi-objective optimal configuration model for TWU is then set up based on network full observability.Finally,according to the TWU distribution,fault section can be located by using temporal correlation,and the final fault location point can be precisely calculated by fusing all the times recorded in TWU.PSCAD/EMTDC simulation results show that the proposed method can quickly,accurately,and reliably locate the fault point under limited TWU with optimal placement.
文摘利用保护动作信息量的传统故障定位方法是在保护动作之后完成故障定位的,在时限上难以满足广域自适应后备保护的要求,特别在站用直流电源消失的情况下,传统方法很难定位出原发性故障。针对上述问题,作者基于广域测量系统(wide area measurement system,WAMS)的实时量测信息,提出应用模糊C均值法对广域信息数据构成的样本进行最优分类,从而定位出故障元件和故障区域的方法。仿真结果表明,该方法不仅能快速、准确地定位出原发性故障,同时能够界定出受故障影响明显的区域,而且满足广域自适应后备保护的时限性要求。