An adaptive blind support vector machine equalizer(ABSVME) is presented in this paper.The method is based upon least square support vector machine(LSSVM),and stems from signal feature reconstruction idea.By oversa...An adaptive blind support vector machine equalizer(ABSVME) is presented in this paper.The method is based upon least square support vector machine(LSSVM),and stems from signal feature reconstruction idea.By oversampling the output of a LSSVM equalizer and exploiting a reasonable decorrelation cost function design,the method achieves fine online channel tracing with Kumar express algorithm and static iterative learning algorithm incorporated.The method is verified through simulation and compared with other nonlinear equalizers.The results show that it provides excellent performance in nonlinear equalization and time-varying channel tracing.Although a constant module equalization algorithm requires that the signal has characteristic of constant module,this method has no such requirement.展开更多
A new approach for blind equalization and channel identification is proposed in this paper. The equalization scheme is based on over sampling technique and an independent component analysis network. The equalized seq...A new approach for blind equalization and channel identification is proposed in this paper. The equalization scheme is based on over sampling technique and an independent component analysis network. The equalized sequence and its higher order statistics are used to identify the channel parameters. Compared to traditional equalization methods, the proposed approach is with a simple architecture, and does not need learning sequences. Computer simulations show the validity of the proposed method.展开更多
Blind equalization based on adaptive forgetting factor, recursive least squares (RLS) with constant modulus algorithm (CMA), is investigated. The cost function of CMA is simplified to meet the second norm form to ...Blind equalization based on adaptive forgetting factor, recursive least squares (RLS) with constant modulus algorithm (CMA), is investigated. The cost function of CMA is simplified to meet the second norm form to ensure the stability of RLS-CMA, and thus an improved RLS-CMA (RLS-SCMA) is established. To further improve its performance, a new adaptive forgetting factor RLS-SCMA (ARLS-SCMA) is proposed. In ARLS-SCMA, the forgetting factor varies with the output error of the blind equalizer during the iterative process, which leads to a faster convergence rate and a smaller steady-state error. The simulation results prove the effectiveness under the condition of the underwater acoustic channel.展开更多
To reduce channel noise,fading,and inter-user interference effectively in the chaotic communication systems with multi-user,a blind channel equalization algorithm based on dual unscented Kalman filter algorithm is pro...To reduce channel noise,fading,and inter-user interference effectively in the chaotic communication systems with multi-user,a blind channel equalization algorithm based on dual unscented Kalman filter algorithm is proposed.Assuming that the coefficients of a multi-input multi-output (MIMO) channel can be described by an autoregressive model,two separate state-space representations are used for the signals and coefficients.Then two unscented Kalman filters are used to estimate chaotic signals and channel coefficients simultaneously.The simulation results indicate that the algorithm can effectively track the coefficients of the multi-path fading channel in chaotic MIMO communication systems at a fast convergence speed.展开更多
A new blind equalization algorithm based on the modified constant modulus algorithm (MCMA) and dithered signederror constant modulus algorithm (DSE-CMA) is proposed. This dithered signed-error MCMA (DSE-MCMA) ca...A new blind equalization algorithm based on the modified constant modulus algorithm (MCMA) and dithered signederror constant modulus algorithm (DSE-CMA) is proposed. This dithered signed-error MCMA (DSE-MCMA) can not only reduce the computational complexity, but also recover the phase rotation in the complex channel. Simulation results have verified the analysis and indicated the good property of DSE-MCMA.展开更多
This paper investigates adaptive blind source separation and equalization for Multiple Input Multiple Output (MIMO) systems. To effectively recover input signals, remove Inter-Symbol Interference (ISI) and suppress In...This paper investigates adaptive blind source separation and equalization for Multiple Input Multiple Output (MIMO) systems. To effectively recover input signals, remove Inter-Symbol Interference (ISI) and suppress Inter-User Interference (IUI), the array input is first transformed into the signal subspace, then with the derived orthogonality between weight vectors of different input signals, a new orthogonal Constant Modulus Algorithm (CMA) is proposed. Computer simulation results illustrate the promising performance of the proposed method. Without channel identification, the proposed method can recover all the system inputs simultaneously and can be adaptive to channel changes without prior knowledge about signals.展开更多
An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square er...An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square error and local convergence of traditional constant modulus blind equalization algorithm(CMA).The proposed algorithm can reduce the signal autocorrelation through the orthogonal wavelet transform of input signal of fractionally spaced blind equalizer,and decrease the possibility of CMA local convergence by using the global random search characteristics of genetic algorithm to optimize the equalizer weight vector.The proposed algorithm has the faster convergence rate and smaller mean square error compared with FSE and WT-FSE.The efficiency of the proposed algorithm is proved by computer simulation of underwater acoustic channels.展开更多
The problem of blind adaptive equalization of underwater single-input multiple-output (SIMO) acoustic channels was analyzed by using the linear prediction method.Minimum mean square error (MMSE) blind equalizers with ...The problem of blind adaptive equalization of underwater single-input multiple-output (SIMO) acoustic channels was analyzed by using the linear prediction method.Minimum mean square error (MMSE) blind equalizers with arbitrary delay were described on a basis of channel identification.Two methods for calculating linear MMSE equalizers were proposed.One was based on full channel identification and realized using RLS adaptive algorithms,and the other was based on the zero-delay MMSE equalizer and realized using LMS and RLS adaptive algorithms,respectively.Performance of the three proposed algorithms and comparison with two existing zero-forcing (ZF) equalization algorithms were investigated by simulations utilizing two underwater acoustic channels.The results show that the proposed algorithms are robust enough to channel order mismatch.They have almost the same performance as the corresponding ZF algorithms under a high signal-to-noise (SNR) ratio and better performance under a low SNR.展开更多
Some novel blind FREquency-SHift (FRESH) equalizer algorithms are proposed for the equalization of Finite Impulse Response (FIR) single channel with anti-interference capabilities. These algorithms based on FRESH filt...Some novel blind FREquency-SHift (FRESH) equalizer algorithms are proposed for the equalization of Finite Impulse Response (FIR) single channel with anti-interference capabilities. These algorithms based on FRESH filter can work well without any training sequence. Simulation results show that the equalizer algorithms can effectively reject many types of interferences and the performances of these new equalizer algorithms are superior to the conventional equalizer algorithms.展开更多
The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a ...The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a training sequence,a blind equalization channel is implemented in the receiver to increase the throughput of the system. To improve the performances of both the blind equalizer and the system,a joint receiving mechanismincluding variable step size( VSS) modified constant modulus algorithms( MC-MA) and modified decision directed modulus algorithms( MD DMA) is proposed to ameliorate the convergence speed and mean square error( MSE) performance and combat the phase error when using high order QAM modulation. The VSS scheme is based on the selection of step size according to the distance between the output of the equalizer and the desired output in the constellation plane. Analysis and simulations showthat the performance of the proposed VSS-MCMA-MD DMA mechanismis better than that of algorithms with a fixed step size. In addition,the MCMA-MDDMA with VSS can performthe phase recovery by itself.展开更多
A single-chip DVB-C quadrature amplitude modulation(QAM) demodulator is proposed,which integrates a 3.3V 10bit 40MSPS analog-to-digital converter and a forward error correction decoder. The demodulator chip can supp...A single-chip DVB-C quadrature amplitude modulation(QAM) demodulator is proposed,which integrates a 3.3V 10bit 40MSPS analog-to-digital converter and a forward error correction decoder. The demodulator chip can support 4-256 QAM with variable bit rate up to 80Mbps. It features a wide carrier offset acquisition range,optimal demodulation algorithm,and small circuit area. The chip is implemented in SMIC 0.25μm 1P5M mixed-signal CMOS technology with a die size of 3.5mm×3. 5mm. The maximum power consumption is 447mW.展开更多
Based on the constant modulus criterion, a new Widely Linear(WL) blind equalizer and a novel widely linear recursive least square constant modulus algorithm are proposed to improve the blind equalization performance f...Based on the constant modulus criterion, a new Widely Linear(WL) blind equalizer and a novel widely linear recursive least square constant modulus algorithm are proposed to improve the blind equalization performance for complex-valued noncircular signals. The new algorithm takes advantage of the WL filtering theory by taking full use of second-order statistical information of the complex-valued noncircular signals. Therefore, the weight vector contains the complete second-order information of the real and imaginary parts to decrease the residual inter-symbol interference effectively. Theoretical analysis and simulation results show that the proposed scheme can significantly improve the equalization performance for complex-valued noncircular signals compared with traditional blind equalization algorithms.展开更多
Some channel compensation techniques integrated into front-end of speech recognizer for improving channel robustness are described. These techniques include cepstral mean normalization, rasta processing and blind equa...Some channel compensation techniques integrated into front-end of speech recognizer for improving channel robustness are described. These techniques include cepstral mean normalization, rasta processing and blind equalization. Two standard channel frequency characteristics, G.712 and MIRS, are introduced as channel distortion references and a mandarin digit string recognition task is performed for evaluating and comparing the performance of these different methods. The recognition results show that in G.712 case blind equalization can achieve the best recognition performance while cepstral mean normalization outperforms the other methods in MIRS case which is capable of reaching a word error rate of 3.96%.展开更多
In the communication field, during transmission, a source signal undergoes a convolutive distortion between its symbols and the channel impulse response. This distortion is referred to as Intersymbol Interference (ISI...In the communication field, during transmission, a source signal undergoes a convolutive distortion between its symbols and the channel impulse response. This distortion is referred to as Intersymbol Interference (ISI) and can be reduced significantly by applying a blind adaptive deconvolution process (blind adaptive equalizer) on the distorted received symbols. But, since the entire blind deconvolution process is carried out with no training symbols and the channel’s coefficients are obviously unknown to the receiver, no actual indication can be given (via the mean square error (MSE) or ISI expression) during the deconvolution process whether the blind adaptive equalizer succeeded to remove the heavy ISI from the transmitted symbols or not. Up to now, the output of a convolution and deconvolution process was mainly investigated from the ISI point of view. In this paper, the output of a convolution and deconvolution process is inspected from the leading digit point of view. Simulation results indicate that for the 4PAM (Pulse Amplitude Modulation) and 16QAM (Quadrature Amplitude Modulation) input case, the number “1” is the leading digit at the output of a convolution and deconvolution process respectively as long as heavy ISI exists. However, this leading digit does not follow exactly Benford’s Law but follows approximately the leading digit (digit 1) of a Gaussian process for independent identically distributed input symbols and a channel with many coefficients.展开更多
Aiming at mitigating multipath effect in dynamic global positioning system (GPS) satellite navigation applications, an approach based on channel blind equalization and real-time recursive least square (RLS) algori...Aiming at mitigating multipath effect in dynamic global positioning system (GPS) satellite navigation applications, an approach based on channel blind equalization and real-time recursive least square (RLS) algorithm is proposed, which is an application of the wireless communication channel equalization theory to GPS receiver tracking loops. The blind equalization mechanism builds upon the detection of the correlation distortion due to multipath channels; therefore an increase in the number of correlator channels is required compared with conventional GPS receivers. An adaptive estimator based on the real-time RLS algorithm is designed for dynamic estimation of multipath channel response. Then, the code and carrier phase receiver tracking errors are compensated by removing the estimated multipath components from the correlators' outputs. To demonstrate the capabilities of the proposed approach, this technique is integrated into a GPS software receiver connected to a navigation satellite signal simulator, thus simulations under controlled dynamic multipath scenarios can be carried out. Simulation results show that in a dynamic and fairly severe multipath environment, the proposed approach achieves simultaneously instantaneous accurate multipath channel estimation and significant multipath tracking errors reduction in both code delay and carrier phase.展开更多
A special Modulation-Induced Cyclostationarity(MIC)scheme is designed for the identification and equaliza-tion of FIR Single-Input-Single-Output(SISO)channel,with the property that the transmit power is constant and t...A special Modulation-Induced Cyclostationarity(MIC)scheme is designed for the identification and equaliza-tion of FIR Single-Input-Single-Output(SISO)channel,with the property that the transmit power is constant and the re-ceiver needs only one antenna.The cyclic Wiener equalizer is presented based on the estimated channel.展开更多
Probabilistically shaped(PS)high-order quadrature amplitude modulation(QAM)signals are attractive to coherent optical communication due to increased spectral efficiency.However,standard digital signal processing algor...Probabilistically shaped(PS)high-order quadrature amplitude modulation(QAM)signals are attractive to coherent optical communication due to increased spectral efficiency.However,standard digital signal processing algorithms are not optimal to demodulate PS high-order QAM signals.Therefore,a compromise equalization is indispensable to compensate the residual distortion.Meanwhile,the performance of conventional blind equalization highly depends on the accurate amplitude radius and distribution of the signals.The PS high-order QAM signals make the issue worsen because of indistinct amplitude distributions.In this work,we proposed an optimized blind equalization by utilizing a peak-density K-means clustering algorithm to accurately track the amplitude radius and distribution.We experimentally demonstrated the proposed method in a PS 256-QAM coherent optical transmission system and achieved approximately 1 dB optical signal-to-noise ratio improvement at the bit error rate of 1×10^(−3).展开更多
Equalization can compensate channel distortion caused by channel multipath effects, and effectively improve convergent of modulation constellation diagram in optical wireless system. In this paper, the subspace blind ...Equalization can compensate channel distortion caused by channel multipath effects, and effectively improve convergent of modulation constellation diagram in optical wireless system. In this paper, the subspace blind equalization algorithm is used to preprocess M-ary phase shift keying(MPSK) subcarrier modulation signal in receiver. Mountain clustering is adopted to get the clustering centers of MPSK modulation constellation diagram, and the modulation order is automatically identified through the k-nearest neighbor(KNN) classifier. The experiment has been done under four different weather conditions. Experimental results show that the convergent of constellation diagram is improved effectively after using the subspace blind equalization algorithm, which means that the accuracy of modulation recognition is increased. The correct recognition rate of 16 PSK can be up to 85% in any kind of weather condition which is mentioned in paper. Meanwhile, the correct recognition rate is the highest in cloudy and the lowest in heavy rain condition.展开更多
基金Supported by the National Natural Science Foundation of China(60772056)the Postdoctoral Science Foundation of China(20070421094)
文摘An adaptive blind support vector machine equalizer(ABSVME) is presented in this paper.The method is based upon least square support vector machine(LSSVM),and stems from signal feature reconstruction idea.By oversampling the output of a LSSVM equalizer and exploiting a reasonable decorrelation cost function design,the method achieves fine online channel tracing with Kumar express algorithm and static iterative learning algorithm incorporated.The method is verified through simulation and compared with other nonlinear equalizers.The results show that it provides excellent performance in nonlinear equalization and time-varying channel tracing.Although a constant module equalization algorithm requires that the signal has characteristic of constant module,this method has no such requirement.
文摘A new approach for blind equalization and channel identification is proposed in this paper. The equalization scheme is based on over sampling technique and an independent component analysis network. The equalized sequence and its higher order statistics are used to identify the channel parameters. Compared to traditional equalization methods, the proposed approach is with a simple architecture, and does not need learning sequences. Computer simulations show the validity of the proposed method.
基金financially supported in part by the National Natural Science Foundation of China(Grant No.61201418)Fundamental Research Funds for the Central Universities(Grant No.DC12010218)Scientific and Technological Research Project for Education Department of Liaoning Province(Grant No.2010046)
文摘Blind equalization based on adaptive forgetting factor, recursive least squares (RLS) with constant modulus algorithm (CMA), is investigated. The cost function of CMA is simplified to meet the second norm form to ensure the stability of RLS-CMA, and thus an improved RLS-CMA (RLS-SCMA) is established. To further improve its performance, a new adaptive forgetting factor RLS-SCMA (ARLS-SCMA) is proposed. In ARLS-SCMA, the forgetting factor varies with the output error of the blind equalizer during the iterative process, which leads to a faster convergence rate and a smaller steady-state error. The simulation results prove the effectiveness under the condition of the underwater acoustic channel.
基金Supported by National Natural Science Foundation of China (No. 60872123)Joint Fund of National Natural Science Foundation of China and Guangdong Provincial Natural Science Foundation (No. U0835001)Fundamental Research Funds for Central Universities (No. 2011ZM0033)
文摘To reduce channel noise,fading,and inter-user interference effectively in the chaotic communication systems with multi-user,a blind channel equalization algorithm based on dual unscented Kalman filter algorithm is proposed.Assuming that the coefficients of a multi-input multi-output (MIMO) channel can be described by an autoregressive model,two separate state-space representations are used for the signals and coefficients.Then two unscented Kalman filters are used to estimate chaotic signals and channel coefficients simultaneously.The simulation results indicate that the algorithm can effectively track the coefficients of the multi-path fading channel in chaotic MIMO communication systems at a fast convergence speed.
基金Supported by the National Natural Science Foundation of China (60372057)
文摘A new blind equalization algorithm based on the modified constant modulus algorithm (MCMA) and dithered signederror constant modulus algorithm (DSE-CMA) is proposed. This dithered signed-error MCMA (DSE-MCMA) can not only reduce the computational complexity, but also recover the phase rotation in the complex channel. Simulation results have verified the analysis and indicated the good property of DSE-MCMA.
文摘This paper investigates adaptive blind source separation and equalization for Multiple Input Multiple Output (MIMO) systems. To effectively recover input signals, remove Inter-Symbol Interference (ISI) and suppress Inter-User Interference (IUI), the array input is first transformed into the signal subspace, then with the derived orthogonality between weight vectors of different input signals, a new orthogonal Constant Modulus Algorithm (CMA) is proposed. Computer simulation results illustrate the promising performance of the proposed method. Without channel identification, the proposed method can recover all the system inputs simultaneously and can be adaptive to channel changes without prior knowledge about signals.
基金Sponsored by the Nature Science Foundation of Jiangsu(BK2009410)
文摘An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square error and local convergence of traditional constant modulus blind equalization algorithm(CMA).The proposed algorithm can reduce the signal autocorrelation through the orthogonal wavelet transform of input signal of fractionally spaced blind equalizer,and decrease the possibility of CMA local convergence by using the global random search characteristics of genetic algorithm to optimize the equalizer weight vector.The proposed algorithm has the faster convergence rate and smaller mean square error compared with FSE and WT-FSE.The efficiency of the proposed algorithm is proved by computer simulation of underwater acoustic channels.
基金Supported by the National Natural Science Foundation of China under Grant No.60372086the Foundation for the Author of National Excellent Doctoral Dissertation of China under Grant No.200753
文摘The problem of blind adaptive equalization of underwater single-input multiple-output (SIMO) acoustic channels was analyzed by using the linear prediction method.Minimum mean square error (MMSE) blind equalizers with arbitrary delay were described on a basis of channel identification.Two methods for calculating linear MMSE equalizers were proposed.One was based on full channel identification and realized using RLS adaptive algorithms,and the other was based on the zero-delay MMSE equalizer and realized using LMS and RLS adaptive algorithms,respectively.Performance of the three proposed algorithms and comparison with two existing zero-forcing (ZF) equalization algorithms were investigated by simulations utilizing two underwater acoustic channels.The results show that the proposed algorithms are robust enough to channel order mismatch.They have almost the same performance as the corresponding ZF algorithms under a high signal-to-noise (SNR) ratio and better performance under a low SNR.
基金National Natural Science Foundation of China (No.60572130)Jiangsu Provincial Natural Science Foundation (BK2006235).
文摘Some novel blind FREquency-SHift (FRESH) equalizer algorithms are proposed for the equalization of Finite Impulse Response (FIR) single channel with anti-interference capabilities. These algorithms based on FRESH filter can work well without any training sequence. Simulation results show that the equalizer algorithms can effectively reject many types of interferences and the performances of these new equalizer algorithms are superior to the conventional equalizer algorithms.
基金Supported by the National Natural Science Foundation of China(6100201461101129+1 种基金6122700161072050)
文摘The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a training sequence,a blind equalization channel is implemented in the receiver to increase the throughput of the system. To improve the performances of both the blind equalizer and the system,a joint receiving mechanismincluding variable step size( VSS) modified constant modulus algorithms( MC-MA) and modified decision directed modulus algorithms( MD DMA) is proposed to ameliorate the convergence speed and mean square error( MSE) performance and combat the phase error when using high order QAM modulation. The VSS scheme is based on the selection of step size according to the distance between the output of the equalizer and the desired output in the constellation plane. Analysis and simulations showthat the performance of the proposed VSS-MCMA-MD DMA mechanismis better than that of algorithms with a fixed step size. In addition,the MCMA-MDDMA with VSS can performthe phase recovery by itself.
文摘A single-chip DVB-C quadrature amplitude modulation(QAM) demodulator is proposed,which integrates a 3.3V 10bit 40MSPS analog-to-digital converter and a forward error correction decoder. The demodulator chip can support 4-256 QAM with variable bit rate up to 80Mbps. It features a wide carrier offset acquisition range,optimal demodulation algorithm,and small circuit area. The chip is implemented in SMIC 0.25μm 1P5M mixed-signal CMOS technology with a die size of 3.5mm×3. 5mm. The maximum power consumption is 447mW.
基金Supported by the National Natural Science Foundation of China(No.61072046)the Basic Scientific and Technological Frontier Project of Henan Province(No.1123004100322)
文摘Based on the constant modulus criterion, a new Widely Linear(WL) blind equalizer and a novel widely linear recursive least square constant modulus algorithm are proposed to improve the blind equalization performance for complex-valued noncircular signals. The new algorithm takes advantage of the WL filtering theory by taking full use of second-order statistical information of the complex-valued noncircular signals. Therefore, the weight vector contains the complete second-order information of the real and imaginary parts to decrease the residual inter-symbol interference effectively. Theoretical analysis and simulation results show that the proposed scheme can significantly improve the equalization performance for complex-valued noncircular signals compared with traditional blind equalization algorithms.
文摘Some channel compensation techniques integrated into front-end of speech recognizer for improving channel robustness are described. These techniques include cepstral mean normalization, rasta processing and blind equalization. Two standard channel frequency characteristics, G.712 and MIRS, are introduced as channel distortion references and a mandarin digit string recognition task is performed for evaluating and comparing the performance of these different methods. The recognition results show that in G.712 case blind equalization can achieve the best recognition performance while cepstral mean normalization outperforms the other methods in MIRS case which is capable of reaching a word error rate of 3.96%.
文摘In the communication field, during transmission, a source signal undergoes a convolutive distortion between its symbols and the channel impulse response. This distortion is referred to as Intersymbol Interference (ISI) and can be reduced significantly by applying a blind adaptive deconvolution process (blind adaptive equalizer) on the distorted received symbols. But, since the entire blind deconvolution process is carried out with no training symbols and the channel’s coefficients are obviously unknown to the receiver, no actual indication can be given (via the mean square error (MSE) or ISI expression) during the deconvolution process whether the blind adaptive equalizer succeeded to remove the heavy ISI from the transmitted symbols or not. Up to now, the output of a convolution and deconvolution process was mainly investigated from the ISI point of view. In this paper, the output of a convolution and deconvolution process is inspected from the leading digit point of view. Simulation results indicate that for the 4PAM (Pulse Amplitude Modulation) and 16QAM (Quadrature Amplitude Modulation) input case, the number “1” is the leading digit at the output of a convolution and deconvolution process respectively as long as heavy ISI exists. However, this leading digit does not follow exactly Benford’s Law but follows approximately the leading digit (digit 1) of a Gaussian process for independent identically distributed input symbols and a channel with many coefficients.
基金co-supported by National Natural Science Foundation of China (No. 61101075)the Pre-research Foundation (No. 9140A24040710HK0126)Fundament Research Funds for the Central Universities (YWF-11-02-176)
文摘Aiming at mitigating multipath effect in dynamic global positioning system (GPS) satellite navigation applications, an approach based on channel blind equalization and real-time recursive least square (RLS) algorithm is proposed, which is an application of the wireless communication channel equalization theory to GPS receiver tracking loops. The blind equalization mechanism builds upon the detection of the correlation distortion due to multipath channels; therefore an increase in the number of correlator channels is required compared with conventional GPS receivers. An adaptive estimator based on the real-time RLS algorithm is designed for dynamic estimation of multipath channel response. Then, the code and carrier phase receiver tracking errors are compensated by removing the estimated multipath components from the correlators' outputs. To demonstrate the capabilities of the proposed approach, this technique is integrated into a GPS software receiver connected to a navigation satellite signal simulator, thus simulations under controlled dynamic multipath scenarios can be carried out. Simulation results show that in a dynamic and fairly severe multipath environment, the proposed approach achieves simultaneously instantaneous accurate multipath channel estimation and significant multipath tracking errors reduction in both code delay and carrier phase.
文摘A special Modulation-Induced Cyclostationarity(MIC)scheme is designed for the identification and equaliza-tion of FIR Single-Input-Single-Output(SISO)channel,with the property that the transmit power is constant and the re-ceiver needs only one antenna.The cyclic Wiener equalizer is presented based on the estimated channel.
基金This work was supported in part by the National Key R&D Program of China(No.2020YFB1805805)the National Natural Science Foundation of China(No.62075147).
文摘Probabilistically shaped(PS)high-order quadrature amplitude modulation(QAM)signals are attractive to coherent optical communication due to increased spectral efficiency.However,standard digital signal processing algorithms are not optimal to demodulate PS high-order QAM signals.Therefore,a compromise equalization is indispensable to compensate the residual distortion.Meanwhile,the performance of conventional blind equalization highly depends on the accurate amplitude radius and distribution of the signals.The PS high-order QAM signals make the issue worsen because of indistinct amplitude distributions.In this work,we proposed an optimized blind equalization by utilizing a peak-density K-means clustering algorithm to accurately track the amplitude radius and distribution.We experimentally demonstrated the proposed method in a PS 256-QAM coherent optical transmission system and achieved approximately 1 dB optical signal-to-noise ratio improvement at the bit error rate of 1×10^(−3).
基金supported by the National Natural Science Foundation of China(No.61671375)the Industrial Research of Science and Technology Plan of Shaanxi Province(No.2016GY-082)
文摘Equalization can compensate channel distortion caused by channel multipath effects, and effectively improve convergent of modulation constellation diagram in optical wireless system. In this paper, the subspace blind equalization algorithm is used to preprocess M-ary phase shift keying(MPSK) subcarrier modulation signal in receiver. Mountain clustering is adopted to get the clustering centers of MPSK modulation constellation diagram, and the modulation order is automatically identified through the k-nearest neighbor(KNN) classifier. The experiment has been done under four different weather conditions. Experimental results show that the convergent of constellation diagram is improved effectively after using the subspace blind equalization algorithm, which means that the accuracy of modulation recognition is increased. The correct recognition rate of 16 PSK can be up to 85% in any kind of weather condition which is mentioned in paper. Meanwhile, the correct recognition rate is the highest in cloudy and the lowest in heavy rain condition.