Letμbe a positive Borel measure on the interval[0,1).The Hankel matrix■with entriesμn,k=μn+k,whereμn=■[0,1)tndμ(t),induces,formally,the operator■where■is an analytic function in.We characterize the measuresμ...Letμbe a positive Borel measure on the interval[0,1).The Hankel matrix■with entriesμn,k=μn+k,whereμn=■[0,1)tndμ(t),induces,formally,the operator■where■is an analytic function in.We characterize the measuresμfor which■is bounded(resp.,compact)operator from the logarithmic Bloch space■into the Bergman space■,where 0≤α<∞,0<p<∞.We also characterize the measuresμfor which■is bounded(resp.,compact)operator from the logarithmic Bloch space■into the classical Bloch space■.展开更多
For anyα∈R,the logarithmic Bloch space BLαconsists of those functions f which are analytic in the unit disk D with.■In this paper,we characterize the closure of the analytic functions of bounded mean oscillation B...For anyα∈R,the logarithmic Bloch space BLαconsists of those functions f which are analytic in the unit disk D with.■In this paper,we characterize the closure of the analytic functions of bounded mean oscillation BMOA in the logarithmic Bloch space BLαfor allα∈R.展开更多
The paper defines an extended Cesaro operator Tg with holomorphic symbol g in the unit ball B of Cn asWhere is the radial derivative of g. In this paper, the author characterizes g for which Tg is bounded (or compact)...The paper defines an extended Cesaro operator Tg with holomorphic symbol g in the unit ball B of Cn asWhere is the radial derivative of g. In this paper, the author characterizes g for which Tg is bounded (or compact) on the Bloch space B and the little Bloch space Bo-展开更多
Let φ be a holomorphic self-map of Bn and ψ ∈ H(Hn). A composition type operator is defined by Tψ,φ(f) = ψf o φ for f ∈ H(Bn), which is a generalization of the multiplication operator and the composition...Let φ be a holomorphic self-map of Bn and ψ ∈ H(Hn). A composition type operator is defined by Tψ,φ(f) = ψf o φ for f ∈ H(Bn), which is a generalization of the multiplication operator and the composition operator. In this article, the necessary and sufficient conditions are given for the composition type operator Tψ,φ to be bounded or compact from Hardy space HP(Bn) to μ-Bloch space Bμ(Bn). The conditions are some supremums concerned with ψ,φ, their derivatives and Bergman metric of Bn. At the same time, two corollaries are obtained.展开更多
In this paper, the authors study the inclusion relations between Dirichlet type spaces DΥT and α-Bloch spaces βα by means of higher radial derivative. The strictness and the best possibility of the inclusion relat...In this paper, the authors study the inclusion relations between Dirichlet type spaces DΥT and α-Bloch spaces βα by means of higher radial derivative. The strictness and the best possibility of the inclusion relations are shown with constructive methods. Furthermore, they sharpen one of the results when Υ=n, which proves that a conjecture in [7] is true.展开更多
Let U^n be the unit polydisc of C^n and φ(φ,…,φ) a holomorphic selfmap of U^n. This paper shows that the composition operator Cφinduced by φis bounded on the little Bloch space β0*(U^n) if and only if φ ...Let U^n be the unit polydisc of C^n and φ(φ,…,φ) a holomorphic selfmap of U^n. This paper shows that the composition operator Cφinduced by φis bounded on the little Bloch space β0*(U^n) if and only if φ ∈β0*(U^n) for every ι=1,2,... ,n, and also gives a sufficient and necessary condition for the composition operator Cφto be compact on the little Bloch space β0* (U^n).展开更多
We study the bounded and the compact weighted composition operators from the Bloch space into the weighted Banach spaces of holomorphic functions on bounded homogeneous domains, with particular attention to the unit p...We study the bounded and the compact weighted composition operators from the Bloch space into the weighted Banach spaces of holomorphic functions on bounded homogeneous domains, with particular attention to the unit polydisk. For bounded homogeneous domains, we characterize the bounded weighted composition operators and determine the operator norm. In addition, we provide sufficient conditions for compactness. For the unit polydisk, we completely characterize the compact weighted composition operators, as well as provide "computable" estimates on the operator norm.展开更多
For all 0 〈 p, q 〈 ∞, let Cφ denote the composition operator from q-Bloch spaces βp to little p-Bloch spaces β0q on the unit ball of C^n. In this article, necessary and sufficient conditions for Cφ to be a boun...For all 0 〈 p, q 〈 ∞, let Cφ denote the composition operator from q-Bloch spaces βp to little p-Bloch spaces β0q on the unit ball of C^n. In this article, necessary and sufficient conditions for Cφ to be a bounded or compact operator are given.展开更多
We characterize boundedness and compactness of products of differentiation op- erators and weighted composition operators between weighted Banach spaces of analytic functions and weighted Zygmund spaces or weighted Bl...We characterize boundedness and compactness of products of differentiation op- erators and weighted composition operators between weighted Banach spaces of analytic functions and weighted Zygmund spaces or weighted Bloch spaces with general weights.展开更多
In this paper, we introduce the weighted Bloch spaces on the first type of classical bounded symmetric domains , and prove the equivalence of the norms and . Furthermore, we study the compactness of composition operat...In this paper, we introduce the weighted Bloch spaces on the first type of classical bounded symmetric domains , and prove the equivalence of the norms and . Furthermore, we study the compactness of composition operator from to , and obtain a sufficient and necessary condition for to be compact.展开更多
For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f...For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f'(φ(z)),z∈D,acting between weighted Bergman spaces induced by a doubling weight and a Bloch type space with a radial weight.展开更多
Let φ be a holomorphic self-map of the open unit polydisk U nin C nand ψ a holomorphic function on U n,p,q0. ∨In this paper,we study the generally weighted Bloch space. The growth estimation of functions in such a ...Let φ be a holomorphic self-map of the open unit polydisk U nin C nand ψ a holomorphic function on U n,p,q0. ∨In this paper,we study the generally weighted Bloch space. The growth estimation of functions in such a kind of space is given by the use of the integral method. Using the growth estimation of functions and the function-theoretical properties of those maps ψ and φ,sufficient conditions for the weighted composition operator Wψ,φ induced by ψ and φ to be bounded and compact between the generally weighted Bloch spaces are investigated.展开更多
In this paper,we study the boundedness and compactness of composition operator C<sub> </sub>on the Bloch space β(Ω),Ω being a bounded homogeneous domain.For Ω=B<sub>n</sub>,we give the ne...In this paper,we study the boundedness and compactness of composition operator C<sub> </sub>on the Bloch space β(Ω),Ω being a bounded homogeneous domain.For Ω=B<sub>n</sub>,we give the necessary and sufficient conditions for a composition operator C<sub> </sub>to be compact on β(B<sub>n</sub>)or β<sub>0</sub>(B<sub>n</sub>).展开更多
Suppose that φ is an analytic self-map of the unit disk Δ. We consider compactness of the composition operator Cφ from the Bloch space B into the spaces QK defined by a nonnegative, nondecreasing function K(r) f...Suppose that φ is an analytic self-map of the unit disk Δ. We consider compactness of the composition operator Cφ from the Bloch space B into the spaces QK defined by a nonnegative, nondecreasing function K(r) for 0 ≤ r 〈 Cφ. Our compactness condition depends only on Φ which can be considered as a slight improvement of the known results. The compactness of Cφ from the Dirichlet space D into the spaces QK is also investigated,展开更多
Let Un be the unit polydisc of ?n and φ=(φ1, ?, φ n ) a holomorphic self-map of Un. As the main result of the paper, it shows that the composition operator C is compact on the Bloch space β(Un) if and only if for ...Let Un be the unit polydisc of ?n and φ=(φ1, ?, φ n ) a holomorphic self-map of Un. As the main result of the paper, it shows that the composition operator C is compact on the Bloch space β(Un) if and only if for every ε > 0, there exists a δ > 0, such that $$\sum\limits_{k,1 = 1}^n {\left| {\frac{{\partial \phi _l }}{{\partial z_k }}(z)} \right|} \frac{{1 - |z_k |^2 }}{{1 - |\phi _l (z)|^2 }}< \varepsilon ,$$ whenever dist(φ(z), ?U n )<δ.展开更多
基金supported by Zhejiang Provincial Natural Science Foundation of China(LY23A010003).
文摘Letμbe a positive Borel measure on the interval[0,1).The Hankel matrix■with entriesμn,k=μn+k,whereμn=■[0,1)tndμ(t),induces,formally,the operator■where■is an analytic function in.We characterize the measuresμfor which■is bounded(resp.,compact)operator from the logarithmic Bloch space■into the Bergman space■,where 0≤α<∞,0<p<∞.We also characterize the measuresμfor which■is bounded(resp.,compact)operator from the logarithmic Bloch space■into the classical Bloch space■.
基金supported by the National Natural Science Foundation of China(11671357,11801508)。
文摘For anyα∈R,the logarithmic Bloch space BLαconsists of those functions f which are analytic in the unit disk D with.■In this paper,we characterize the closure of the analytic functions of bounded mean oscillation BMOA in the logarithmic Bloch space BLαfor allα∈R.
基金This research is partially supported by the 151 Projectionthe Natural Science Foundation of Zhejiang Province.
文摘The paper defines an extended Cesaro operator Tg with holomorphic symbol g in the unit ball B of Cn asWhere is the radial derivative of g. In this paper, the author characterizes g for which Tg is bounded (or compact) on the Bloch space B and the little Bloch space Bo-
基金Supported by NSF of China (10571164)SRFDP of Higher Education (20050358052)
文摘Let φ be a holomorphic self-map of Bn and ψ ∈ H(Hn). A composition type operator is defined by Tψ,φ(f) = ψf o φ for f ∈ H(Bn), which is a generalization of the multiplication operator and the composition operator. In this article, the necessary and sufficient conditions are given for the composition type operator Tψ,φ to be bounded or compact from Hardy space HP(Bn) to μ-Bloch space Bμ(Bn). The conditions are some supremums concerned with ψ,φ, their derivatives and Bergman metric of Bn. At the same time, two corollaries are obtained.
基金The research is supported by NNSF of China (10271117)
文摘In this paper, the authors study the inclusion relations between Dirichlet type spaces DΥT and α-Bloch spaces βα by means of higher radial derivative. The strictness and the best possibility of the inclusion relations are shown with constructive methods. Furthermore, they sharpen one of the results when Υ=n, which proves that a conjecture in [7] is true.
文摘Let U^n be the unit polydisc of C^n and φ(φ,…,φ) a holomorphic selfmap of U^n. This paper shows that the composition operator Cφinduced by φis bounded on the little Bloch space β0*(U^n) if and only if φ ∈β0*(U^n) for every ι=1,2,... ,n, and also gives a sufficient and necessary condition for the composition operator Cφto be compact on the little Bloch space β0* (U^n).
文摘We study the bounded and the compact weighted composition operators from the Bloch space into the weighted Banach spaces of holomorphic functions on bounded homogeneous domains, with particular attention to the unit polydisk. For bounded homogeneous domains, we characterize the bounded weighted composition operators and determine the operator norm. In addition, we provide sufficient conditions for compactness. For the unit polydisk, we completely characterize the compact weighted composition operators, as well as provide "computable" estimates on the operator norm.
文摘For all 0 〈 p, q 〈 ∞, let Cφ denote the composition operator from q-Bloch spaces βp to little p-Bloch spaces β0q on the unit ball of C^n. In this article, necessary and sufficient conditions for Cφ to be a bounded or compact operator are given.
基金supported by SQU Grant No.IG/SCI/DOMS/16/12The second author was partially supported by NSFC(11720101003)the Project of International Science and Technology Cooperation Innovation Platform in Universities in Guangdong Province(2014KGJHZ007)
文摘We characterize boundedness and compactness of products of differentiation op- erators and weighted composition operators between weighted Banach spaces of analytic functions and weighted Zygmund spaces or weighted Bloch spaces with general weights.
文摘In this paper, we introduce the weighted Bloch spaces on the first type of classical bounded symmetric domains , and prove the equivalence of the norms and . Furthermore, we study the compactness of composition operator from to , and obtain a sufficient and necessary condition for to be compact.
文摘For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f'(φ(z)),z∈D,acting between weighted Bergman spaces induced by a doubling weight and a Bloch type space with a radial weight.
基金Supported by the National Natural Science Foundation of China (10671147,10401027)the Key Project of Ministry of Education of China (208081)+1 种基金the Natural Science Foundation of Henan(20071100162008B110006)
文摘Let φ be a holomorphic self-map of the open unit polydisk U nin C nand ψ a holomorphic function on U n,p,q0. ∨In this paper,we study the generally weighted Bloch space. The growth estimation of functions in such a kind of space is given by the use of the integral method. Using the growth estimation of functions and the function-theoretical properties of those maps ψ and φ,sufficient conditions for the weighted composition operator Wψ,φ induced by ψ and φ to be bounded and compact between the generally weighted Bloch spaces are investigated.
基金Supported by the National Natural Science Foundation the National Education Committee Doctoral Foundation
文摘In this paper,we study the boundedness and compactness of composition operator C<sub> </sub>on the Bloch space β(Ω),Ω being a bounded homogeneous domain.For Ω=B<sub>n</sub>,we give the necessary and sufficient conditions for a composition operator C<sub> </sub>to be compact on β(B<sub>n</sub>)or β<sub>0</sub>(B<sub>n</sub>).
基金the National Natural Science Foundation of China (No.10371069) and the NSF of Guangdong Province of China (No.04011000)
文摘Suppose that φ is an analytic self-map of the unit disk Δ. We consider compactness of the composition operator Cφ from the Bloch space B into the spaces QK defined by a nonnegative, nondecreasing function K(r) for 0 ≤ r 〈 Cφ. Our compactness condition depends only on Φ which can be considered as a slight improvement of the known results. The compactness of Cφ from the Dirichlet space D into the spaces QK is also investigated,
基金This work was supported in part by the National Natural Science Foundation of China ( Grant No. 19871081).
文摘Let Un be the unit polydisc of ?n and φ=(φ1, ?, φ n ) a holomorphic self-map of Un. As the main result of the paper, it shows that the composition operator C is compact on the Bloch space β(Un) if and only if for every ε > 0, there exists a δ > 0, such that $$\sum\limits_{k,1 = 1}^n {\left| {\frac{{\partial \phi _l }}{{\partial z_k }}(z)} \right|} \frac{{1 - |z_k |^2 }}{{1 - |\phi _l (z)|^2 }}< \varepsilon ,$$ whenever dist(φ(z), ?U n )<δ.