In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to t...In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi-crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.展开更多
The performances of several multireference electronic structure methods including complete active space self-consistent field (CASSCF)-based second-order perturbation theory (CASPT2), multireference configuration inte...The performances of several multireference electronic structure methods including complete active space self-consistent field (CASSCF)-based second-order perturbation theory (CASPT2), multireference configuration interaction with single and double excitations (MR-CISD), MR-CISD with the Davidson correction (MR-CISD+Q), and the CASSCF-based block-correlated coupled cluster method (CAS-BCCC4) we developed recently are compared by applying them to study several different chemical problems involving computation of ground state potential energy surfaces, the singlet-triplet gaps in diradicals, reaction barriers, and the excitation energies of low-lying excited states. Comparison with the results from other highly accurate theoretical methods or the available experimental data demonstrate that for all the problems studied, the overall performance of CAS-BCCC4 is competitive with that of MR-CISD+Q, and better than that of CASPT2 and MR-CISD methods. Thus the CAS-BCCC4 approach is expected to be a promising theoretical method for quantitative descriptions of the electronic structures of molecules with noticeable multireference character.展开更多
基金Supported by the Major Program of National Natural Science Foundation of China (No. 70890080 and No. 70890083)
文摘In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi-crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.
基金supported by the National Natural Science Foundation of China (Grant Nos. 20625309 and 20833003)the National Basic Research Program (Grant No. 2004CB719901)the China Postdoctoral Science Foundation (Grant No. 200904501069)
文摘The performances of several multireference electronic structure methods including complete active space self-consistent field (CASSCF)-based second-order perturbation theory (CASPT2), multireference configuration interaction with single and double excitations (MR-CISD), MR-CISD with the Davidson correction (MR-CISD+Q), and the CASSCF-based block-correlated coupled cluster method (CAS-BCCC4) we developed recently are compared by applying them to study several different chemical problems involving computation of ground state potential energy surfaces, the singlet-triplet gaps in diradicals, reaction barriers, and the excitation energies of low-lying excited states. Comparison with the results from other highly accurate theoretical methods or the available experimental data demonstrate that for all the problems studied, the overall performance of CAS-BCCC4 is competitive with that of MR-CISD+Q, and better than that of CASPT2 and MR-CISD methods. Thus the CAS-BCCC4 approach is expected to be a promising theoretical method for quantitative descriptions of the electronic structures of molecules with noticeable multireference character.