期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Key technologies and risk management of deep tunnel construction at Jinping Ⅱ hydropower station 被引量:1
1
作者 Chunsheng Zhang Ning Liu Weijiang Chu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第4期499-512,共14页
Tunneling in complex rock mass conditions is a challenging task, especially in the Himalayan terrain, where a number of unpredicted conditions are reported. Rock joint parameters such as persistence, spacing and shear... Tunneling in complex rock mass conditions is a challenging task, especially in the Himalayan terrain, where a number of unpredicted conditions are reported. Rock joint parameters such as persistence, spacing and shear strength are the factors which significantly modify the working environments in the vicinity of the openings. Therefore, a detailed tunnel stability assessment is critically important based on the field data collection on the excavated tunnel's face. In this context, intact as well as rock mass strength and deformation modulus is obtained from laboratory tests for each rock type encountered in the study area. Finite element method(FEM) is used for stability analysis purpose by parametrically varying rock joint persistence, spacing and shear strength parameters, until the condition of overbreak is reached. Another case of marginally stable condition is also obtained based on the same parameters. The results show that stability of tunnels is highly influenced by these parameters and the size of overbreak is controlled by joint persistence and spacing. Garnetiferous schist and slate characterized using high persistence show the development of large plastic zones but small block size, depending upon joint spacing; whereas low persistence, low spacing and low shear strength in marble and quartzite create rock block fall condition. 展开更多
关键词 Joint strength Joint spacing Persistence block size Overbreak block fall
下载PDF
Characteristics of the crack tip field in high-speed railway tunnel linings under train-induced aerodynamic shockwaves
2
作者 Yi-Kang Liu Yu-Ling Wang +3 位作者 E Deng Yi-Qing Ni Wei-Chao Yang Wai-Kei Ao 《Underground Space》 SCIE EI CSCD 2024年第5期199-217,共19页
High-speed railway tunnels in various countries have continuously reported accidents of vault falling concrete blocks.Once the concrete block falling occurs,serious consequences follow,and traffic safety may be endang... High-speed railway tunnels in various countries have continuously reported accidents of vault falling concrete blocks.Once the concrete block falling occurs,serious consequences follow,and traffic safety may be endangered.The aerodynamic shockwave evolves from the initial compression wave may be an important inducement causing the tunnel lining cracks to grow and form falling concrete blocks.A joint calculation framework is established based on ANSYS Fluent,ABAQUS,and FRANC3D for calculating the crack tip field under the aerodynamic shockwave.The intensification effect of aerodynamic shockwaves in the crack is revealed,and the evolution characteristics of the crack tip field and the influence factors of stress intensity factor(SIF)are analyzed.Results show that(1)the aerodynamic shockwave intensifies after entering the crack,resulting in more significant pressure in the crack than the input pressure.The maximum pressure of the inclined and longitudinal cracks is higher than the corresponding values of the circumferential crack,respectively.(2)The maximum SIF of the circumferential,inclined,and longitudinal crack appears at 0.5,0.68,and 0.78 times the crack front length.The maximum SIF of the circumferential crack is higher than that of the inclined and longitudinal crack.The possibility of crack growth of the circumferential crack is the highest under aerodynamic shockwaves.(3)The influence of train speed on the SIF of the circumferential crack is more than 40%.When the train speed,crack depth,and crack length change,the change of pressure in the crack is the direct cause of the change of SIF. 展开更多
关键词 falling concrete blocks Tunnel lining cracks Aerodynamic shockwave Intensification effect Crack tip field Stress intensity factor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部