The discovery of the essential difference of maximum ion energy for TW-pslaser plasma interaction compared with, the 100 ns laser pulses led to the theory of a skin layermodel where the control of prepulses suppressed...The discovery of the essential difference of maximum ion energy for TW-pslaser plasma interaction compared with, the 100 ns laser pulses led to the theory of a skin layermodel where the control of prepulses suppressed the usual relativistic self-focusing. The subsequentgeneration of two nonlinear force driven blocks has been demonstrated experimentally and inextensive numerical studies where one block moves against the laser light and the other block intothe irradiated target. These blocks of nearly solid state density DT plasma correspond to ion beamcurrent densities exceeding 10^(10) A/cm^2 where the ion velocity can be chosen up to highlyrelativistic values. Using the results of the expected ignition of DT fuel by light ion beams, aself-sustained fusion reaction front may be generated even into uncompressed solid DT fuel similarto the Nuckolls-Wood scheme where 10 kJ laser pulses produce 100 MJ fusion energy. This new andsimplified scheme of laser-ICF needs and optimisation of the involved parameters.展开更多
To research techniques for removing the water blocking effect caused by hydraulic applications in coal seams,the use of surfactants is proposed,based on the mechanics of the water blocking effect.Centrifugal experimen...To research techniques for removing the water blocking effect caused by hydraulic applications in coal seams,the use of surfactants is proposed,based on the mechanics of the water blocking effect.Centrifugal experiments were used to validate the effects of using surfactants;the results show that after dealing with vacuum saturation with water,the volume of micropores decreases,which results in a larger average pore size,and the volume of transitional pores,mesopores,macropores and total pores increases.Based on the distribution of pore size,the operation mode of ‘‘water infusion after gas extraction,then continuing gas extraction" is recommended to improve the volume of coal mine gas drainage.When the reflectance of vitrinite in coal samples is less than 1,using the surfactants Fast T,1631,APG,BS can mitigate the damage caused by the water blocking effect.But when the reflectance of vitrinite is larger than 1.4,the damage caused by the water blocking effect can be increased.When the surfactant CMC is used in hydraulic applications,the capillary forces of coal samples are almost negative,which means the capillary force is in the same direction as the gas extraction.The direction of capillary forces benefits the gas flow.So,using CMC can play an active role in removing the water blocking effect.Centrifugal experiments confirm that using CMC can effectively remove the water blocking effect,which has a beneficial effect on improving the gas drainage volume.展开更多
A barotropic channel model in β-plane is used to study the effect of topographic forcing on the formation and maintenance of blocking. The approximate analytical solution of potential vorticity equation can show the ...A barotropic channel model in β-plane is used to study the effect of topographic forcing on the formation and maintenance of blocking. The approximate analytical solution of potential vorticity equation can show the main property of the whole process of blocking. It is indicated that the topographic forcing is one of the main factors causing the blocking process. The results suggest that the nonlinear interaction plays a very important role in the stable 'Ω' situation of blocking. The atmospheric circulation with periodic and low-frequency oscillation, perhaps, is partly caused by topographic forcing.展开更多
The motion of an Ionic Polymer Metal Composite (IPMC) cantilever under a periodic voltage control is modeled. In our finite element 3D model, we follow both the free tip displacements and the blocking forces for var...The motion of an Ionic Polymer Metal Composite (IPMC) cantilever under a periodic voltage control is modeled. In our finite element 3D model, we follow both the free tip displacements and the blocking forces for various thicknesses and elastic constants of the ionomer membrane. It turns out that the maximum displacement of the free tip strongly depends on the value of the Young's modulus of the electrodes. Furthermore, the maximum blocking force, Fmax, increases with the thickness of the ionomer membrane. At constant values of Young's moduli of the electrodes and ionomer membrane thickness, if the Young's modulus of the ionomer membrane varies within the range from 0.2 MPa to 1 GPa, the change of Fmax is less than 10 %. The simulated maximal displacements, blocking forces and electrical currents are compared with the corresponding sets of ex- perimental data, respectively. Qualitative agreement between the simulated and the respective measured data profiles is ob- tained. Furthermore, it is found that the assumption of electrostatic interactions in the cation depleted region of the ionomer membrane has a negligible effect. The advantage of the model consists in its simplicity.展开更多
Ionic polymer-metal composites(IPMCs)are typical smart mate-rials that are commonly used in bionic applications,including soft robots,bionic flapping aircraft,and bionic fish.However,their low output force seriously l...Ionic polymer-metal composites(IPMCs)are typical smart mate-rials that are commonly used in bionic applications,including soft robots,bionic flapping aircraft,and bionic fish.However,their low output force seriously limits device performance.Stacking of multiple IPMC actuators to improve the overall performance of soft actuators is a strategy that is used in practical applications.Under the energy dissipation condition in the IPMC stacking structure,if each single IPMC in the struc-ture has high power density,the structure will produce excel-lent performance with high efficiency that can greatly promote wider application of IPMC actuators.To meet this requirement,a method for fabrication process integration with multiple opti-mized factors was used to obtain IPMC materials in this paper.Carbon nanotube(CNT)doping,isopropyl alcohol-assisted plat-ing,and hot pressing with a mesoscopic structural mold were selected as typical optimization methods for process integration and were initially investigated separately to determine the opti-mal process parameters.By combining the best process para-meters in an integrated process,the IPMC treated by isopropyl alcohol-assisted plating and CNT doping process(No.AC7)showed excellent actuation performance and high work density(~9.71/12.36 gf,~14.93/31.89 kJ/m^(3) under 3/4 VDC).The enhanced performance meets the requirements for practical bionic applications.展开更多
In this work,we printed a Nafion precursor membrane by fused deposition modeling(FDM)rapid prototyping technology and further fabricated IPMCs by electroless plating.The ion-exchange capacity of the Nafion membrane wa...In this work,we printed a Nafion precursor membrane by fused deposition modeling(FDM)rapid prototyping technology and further fabricated IPMCs by electroless plating.The ion-exchange capacity of the Nafion membrane was tested,and the morphology of IPMCs was observed.The electro-mechanical properties of IPMCs under AC voltage inputs were studied,and grasping experiments were performed.The results show that the Nafion membrane after hydrolysis has a good ion-exchange ability and water-holding capacity.SEM observed that the thickness of the IPMC’s electrode layer was about 400 nm,and the platinum layer was tightly combined with the substrate membrane.When using a square wave input of 3.5 V and 0.1 Hz,the maximum current of IPMCs reached 0.30 A,and the displacement and blocking force were 7.57 mm and 10.5 mN,respectively.The new fabrication process ensures the good driving performance of the printed IPMC.And two pieces of IPMCs can capture the irregular objects successfully,indicating the feasibility of printing IPMCs by FDM technology.This paper provides a new and simple method for the fabrication of three-dimensional IPMCs,which can be further applied in flexible grippers and soft robotics.展开更多
文摘The discovery of the essential difference of maximum ion energy for TW-pslaser plasma interaction compared with, the 100 ns laser pulses led to the theory of a skin layermodel where the control of prepulses suppressed the usual relativistic self-focusing. The subsequentgeneration of two nonlinear force driven blocks has been demonstrated experimentally and inextensive numerical studies where one block moves against the laser light and the other block intothe irradiated target. These blocks of nearly solid state density DT plasma correspond to ion beamcurrent densities exceeding 10^(10) A/cm^2 where the ion velocity can be chosen up to highlyrelativistic values. Using the results of the expected ignition of DT fuel by light ion beams, aself-sustained fusion reaction front may be generated even into uncompressed solid DT fuel similarto the Nuckolls-Wood scheme where 10 kJ laser pulses produce 100 MJ fusion energy. This new andsimplified scheme of laser-ICF needs and optimisation of the involved parameters.
基金financially supported by the National Natural Science Foundation of China (No.51504084)the Education Department of Fujian Province (No.JA15493)
文摘To research techniques for removing the water blocking effect caused by hydraulic applications in coal seams,the use of surfactants is proposed,based on the mechanics of the water blocking effect.Centrifugal experiments were used to validate the effects of using surfactants;the results show that after dealing with vacuum saturation with water,the volume of micropores decreases,which results in a larger average pore size,and the volume of transitional pores,mesopores,macropores and total pores increases.Based on the distribution of pore size,the operation mode of ‘‘water infusion after gas extraction,then continuing gas extraction" is recommended to improve the volume of coal mine gas drainage.When the reflectance of vitrinite in coal samples is less than 1,using the surfactants Fast T,1631,APG,BS can mitigate the damage caused by the water blocking effect.But when the reflectance of vitrinite is larger than 1.4,the damage caused by the water blocking effect can be increased.When the surfactant CMC is used in hydraulic applications,the capillary forces of coal samples are almost negative,which means the capillary force is in the same direction as the gas extraction.The direction of capillary forces benefits the gas flow.So,using CMC can play an active role in removing the water blocking effect.Centrifugal experiments confirm that using CMC can effectively remove the water blocking effect,which has a beneficial effect on improving the gas drainage volume.
文摘A barotropic channel model in β-plane is used to study the effect of topographic forcing on the formation and maintenance of blocking. The approximate analytical solution of potential vorticity equation can show the main property of the whole process of blocking. It is indicated that the topographic forcing is one of the main factors causing the blocking process. The results suggest that the nonlinear interaction plays a very important role in the stable 'Ω' situation of blocking. The atmospheric circulation with periodic and low-frequency oscillation, perhaps, is partly caused by topographic forcing.
基金Support of the work by the National Natural Sci- ence Foundation of China (Grant No. 51175251), the Natural Science Foundation of Jiangsu Province (Grant No. BK2011734) and support of the work by the Czech Science Foundation via project 14-36566G are grate- fully acknowledged.
文摘The motion of an Ionic Polymer Metal Composite (IPMC) cantilever under a periodic voltage control is modeled. In our finite element 3D model, we follow both the free tip displacements and the blocking forces for various thicknesses and elastic constants of the ionomer membrane. It turns out that the maximum displacement of the free tip strongly depends on the value of the Young's modulus of the electrodes. Furthermore, the maximum blocking force, Fmax, increases with the thickness of the ionomer membrane. At constant values of Young's moduli of the electrodes and ionomer membrane thickness, if the Young's modulus of the ionomer membrane varies within the range from 0.2 MPa to 1 GPa, the change of Fmax is less than 10 %. The simulated maximal displacements, blocking forces and electrical currents are compared with the corresponding sets of ex- perimental data, respectively. Qualitative agreement between the simulated and the respective measured data profiles is ob- tained. Furthermore, it is found that the assumption of electrostatic interactions in the cation depleted region of the ionomer membrane has a negligible effect. The advantage of the model consists in its simplicity.
基金This work was supported by the National Natural Science Foundation of China[11802223,61890961]Basic Research Project of China[JCKY2020110C074].
文摘Ionic polymer-metal composites(IPMCs)are typical smart mate-rials that are commonly used in bionic applications,including soft robots,bionic flapping aircraft,and bionic fish.However,their low output force seriously limits device performance.Stacking of multiple IPMC actuators to improve the overall performance of soft actuators is a strategy that is used in practical applications.Under the energy dissipation condition in the IPMC stacking structure,if each single IPMC in the struc-ture has high power density,the structure will produce excel-lent performance with high efficiency that can greatly promote wider application of IPMC actuators.To meet this requirement,a method for fabrication process integration with multiple opti-mized factors was used to obtain IPMC materials in this paper.Carbon nanotube(CNT)doping,isopropyl alcohol-assisted plat-ing,and hot pressing with a mesoscopic structural mold were selected as typical optimization methods for process integration and were initially investigated separately to determine the opti-mal process parameters.By combining the best process para-meters in an integrated process,the IPMC treated by isopropyl alcohol-assisted plating and CNT doping process(No.AC7)showed excellent actuation performance and high work density(~9.71/12.36 gf,~14.93/31.89 kJ/m^(3) under 3/4 VDC).The enhanced performance meets the requirements for practical bionic applications.
基金This research was supported by the Joint Funds of the National Natural Science Foundation of China(U1637101)and NSFC(51605220)the Natural Science Foundation of Jiangsu Province(BK20160793)Open Funding from the Shanghai Key Laboratory of Spacecraft Mechanism,Open Project funding form Hubei Key Laboratory of Hydroelectric Machinery Design&Maintenance(2017KJX11).
文摘In this work,we printed a Nafion precursor membrane by fused deposition modeling(FDM)rapid prototyping technology and further fabricated IPMCs by electroless plating.The ion-exchange capacity of the Nafion membrane was tested,and the morphology of IPMCs was observed.The electro-mechanical properties of IPMCs under AC voltage inputs were studied,and grasping experiments were performed.The results show that the Nafion membrane after hydrolysis has a good ion-exchange ability and water-holding capacity.SEM observed that the thickness of the IPMC’s electrode layer was about 400 nm,and the platinum layer was tightly combined with the substrate membrane.When using a square wave input of 3.5 V and 0.1 Hz,the maximum current of IPMCs reached 0.30 A,and the displacement and blocking force were 7.57 mm and 10.5 mN,respectively.The new fabrication process ensures the good driving performance of the printed IPMC.And two pieces of IPMCs can capture the irregular objects successfully,indicating the feasibility of printing IPMCs by FDM technology.This paper provides a new and simple method for the fabrication of three-dimensional IPMCs,which can be further applied in flexible grippers and soft robotics.