期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Congestion Control Using In-Network Telemetry for Lossless Datacenters
1
作者 Jin Wang Dongzhi Yuan +3 位作者 Wangqing Luo Shuying Rao R.Simon Sherratt Jinbin Hu 《Computers, Materials & Continua》 SCIE EI 2023年第4期1195-1212,共18页
In the Ethernet lossless Data Center Networks (DCNs) deployedwith Priority-based Flow Control (PFC), the head-of-line blocking problemis still difficult to prevent due to PFC triggering under burst trafficscenarios ev... In the Ethernet lossless Data Center Networks (DCNs) deployedwith Priority-based Flow Control (PFC), the head-of-line blocking problemis still difficult to prevent due to PFC triggering under burst trafficscenarios even with the existing congestion control solutions. To addressthe head-of-line blocking problem of PFC, we propose a new congestioncontrol mechanism. The key point of Congestion Control Using In-NetworkTelemetry for Lossless Datacenters (ICC) is to use In-Network Telemetry(INT) technology to obtain comprehensive congestion information, which isthen fed back to the sender to adjust the sending rate timely and accurately.It is possible to control congestion in time, converge to the target rate quickly,and maintain a near-zero queue length at the switch when using ICC. Weconducted Network Simulator-3 (NS-3) simulation experiments to test theICC’s performance. When compared to Congestion Control for Large-ScaleRDMA Deployments (DCQCN), TIMELY: RTT-based Congestion Controlfor the Datacenter (TIMELY), and Re-architecting Congestion Managementin Lossless Ethernet (PCN), ICC effectively reduces PFC pause messages andFlow Completion Time (FCT) by 47%, 56%, 34%, and 15.3×, 14.8×, and11.2×, respectively. 展开更多
关键词 Data center lossless networks congestion control head of line blocking in-network telemetry
下载PDF
A Coupling Model of the Discontinuous Deformation Analysis Method and the Finite Element Method
2
作者 张明 杨合庆 李仲奎 《Tsinghua Science and Technology》 SCIE EI CAS 2005年第2期221-226,共6页
Neither the finite element method nor the discontinuous deformation analysis method can solve problems very well in rock mechanics and engineering due to their extreme complexities. A coupling method combining both ... Neither the finite element method nor the discontinuous deformation analysis method can solve problems very well in rock mechanics and engineering due to their extreme complexities. A coupling method combining both of them should have wider applicability. Such a model coupling the discontinuous deforma- tion analysis method and the finite element method is proposed in this paper. In the model, so-called line blocks are introduced to deal with the interaction via the common interfacial boundary of the discontinuous deformation analysis domain with the finite element domain. The interfacial conditions during the incre- mental iteration process are satisfied by means of the line blocks. The requirement of gradual small dis- placements in each incremental step of this coupling method is met through a displacement control proce- dure. The model is simple in concept and is easy in numerical implementation. A numerical example is given. The displacement obtained by the coupling method agrees well with those obtained by the finite ele- ment method, which shows the rationality of this model and the validity of the implementation scheme. 展开更多
关键词 discontinuous deformation analysis finite element method coupling model line block rock mechanics and engineering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部