针对YOLOv7模型在口罩佩戴检测任务中特征提取能力不足、模型感受野相对较小等问题,提出一种改进YOLOv7的口罩佩戴检测算法。首先,在YOLOv7模型的主干网络引入感受野模块(receptive field block,RFB),增大模型的感受野;其次,在YOLOv7模...针对YOLOv7模型在口罩佩戴检测任务中特征提取能力不足、模型感受野相对较小等问题,提出一种改进YOLOv7的口罩佩戴检测算法。首先,在YOLOv7模型的主干网络引入感受野模块(receptive field block,RFB),增大模型的感受野;其次,在YOLOv7模型的头部网络引入卷积块注意力模块(convolutional block attention module,CBAM),提取关键信息,忽略无关信息,增强特征图的信息表达能力,提高模型的检测能力。实验结果表明:改进后的YOLOv7口罩佩戴检测算法精确率达到95.7%,较原YOLOv7算法提高了5.6百分点;平均精度均值达到96.6%,提高了2.6百分点。相比于目前主流的口罩佩戴检测算法,改进后的YOLOv7口罩佩戴检测算法可以更加准确地检测出口罩佩戴情况。展开更多