The spherical valve plate/cylinder block pair has the advantages of strong overturning resistance and large bearing area.However,the configurations of the unloading and pre-boosting triangular grooves on the spherical...The spherical valve plate/cylinder block pair has the advantages of strong overturning resistance and large bearing area.However,the configurations of the unloading and pre-boosting triangular grooves on the spherical valve plate are different from those in the planar valve plate,resulting in special cavitation phenomenon on the spherical port plate pair.In order to study cavitation characteristics of spherical port plate pair,a dynamic CFD model of the piston pump including turbulence model,cavitation model and fluid compressibility is established.A detailed UDF compilation scheme is provided for modelling of the micron-sized spherical oil film mesh,which makes up for the lack of research on the meshing of the spherical oil film.In this paper,using CFD simulation tools,from the perspectives of pressure field,velocity field and gas volume fraction change,a detailed analysis of the transient evolution of the submerged cavitation jet in a axial piston pump with spherical valve plate is carried out.The study indicates the movement direction of the cavitation cloud cluster through the cloud image and the velocity vector direction of the observation point.The sharp decrease of velocity and gas volume fraction indicates the collapse phenomenon of bubbles on the part wall surface.These discoveries verify the special erosion effect in case of the spherical valve plate/cylinder block pair.The submerged cavitation jet generated by the unloading triangular grooves distributed on the spherical valve plate not only cause denudation of the inner wall surface of the valve plate,but also cause strong impact and denudation on the lower surface of the cylinder body.Finally,the direction of the unloading triangular groove was modified to extend the distance between it and the wall surface which can effectively alleviate the erosion effect.展开更多
In this paper, the influence of a drain field plate (FP) on the forward blocking characteristics of an AlGaN/GaN high electron mobility transistor (HEMT) is investigated. The HEMT with only a gate FP is optimized,...In this paper, the influence of a drain field plate (FP) on the forward blocking characteristics of an AlGaN/GaN high electron mobility transistor (HEMT) is investigated. The HEMT with only a gate FP is optimized, and breakdown voltage VBR is saturated at 1085 V for gate–drain spacing LGD ≥ 8 μm. On the basis of the HEMT with a gate FP, a drain FP is added with LGD=10 μm. For the length of the drain FP LDF ≤ 2 μm, VBR is almost kept at 1085 V, showing no degradation. When LDF exceeds 2 μm, VBR decreases obviously as LDF increases. Moreover, the larger the LDF, the larger the decrease of VBR. It is concluded that the distance between the gate edge and the drain FP edge should be larger than a certain value to prevent the drain FP from affecting the forward blocking voltage and the value should be equal to the LGD at which VBR begins to saturate in the first structure. The electric field and potential distribution are simulated and analyzed to account for the decrease of VBR.展开更多
The tribological properties of cylinder block/valve plate is an important consideration in the design of axial piston pump.The effect of materials and heat treatment on friction and wear properties has been studied in...The tribological properties of cylinder block/valve plate is an important consideration in the design of axial piston pump.The effect of materials and heat treatment on friction and wear properties has been studied in depth.Engi-neering experiences show that the speed and load also affect the tribological properties,but these have not been systematically analyzed.The purpose of this paper is to evaluate the tribological properties of the commonly used materials(CuPb1 5Sn5 and 38CrMoAl/42CrMo)for cylinder block/valve plate with different heat treatment and con-tact pressure at different speed.During the test,tribometer is used to simulate the contact pattern between the valve plate/cylinder block in axial piston pump,the friction coefficient,wear rate and surface topography are analyzed to evaluate the tribological properties of different types of friction samples at different speed.Results indicate that:(1)contact surface of the samples at 1800 r/min is more prone to adhesive wear than those at 500 r/min;(2)in the terms of wear resistance,quench-tempered and nitrided 38CrMoAl(38CrMoAl QTN for short)is better than quench-tem-pered and nitrided 42CrMo,although they are all commonly used materials in the axial piston pump;(3)2.5 MPa is the critical contact pressure of the interface between valve plate made of 38CrMoAl QTN and cylinder block made of CuPb1 5Sn5 on the tribometer,which implies the pressure bearing area at the bottom of the cylinder block should be carefully designed;(4)the valve plate/cylinder block made of 38CrMoAl QTN/CuPb15Sn5 exhibits good tribological properties in a real axial piston pump.This research is useful for the failure analysis and structural optimization design of the valve plates/cylinder block.展开更多
Layer-block tectonics (LBT) concept, with the core of pluralistic geodynamic outlook and multilayer-sliding tectonic outlook, is one of new keys to study 3-dimensional solid and its 4-dimensional evolution history o...Layer-block tectonics (LBT) concept, with the core of pluralistic geodynamic outlook and multilayer-sliding tectonic outlook, is one of new keys to study 3-dimensional solid and its 4-dimensional evolution history of global tectonic system controlled by global geodynamics system. The LBT concept is applied to study the lithospheric tectonics of the southern South China Sea (SCS). Based on the analysis of about 30 000 km of geophysical and geological data, some layer-blocks in the Nansha micro-plate can be divided as Nansha ultra-crustal layer-block, Zengmu crustal layer-block, Nanwei (Rifleman bank)-Andu (Ardasier bank) and Liyue (Reed bank) North Palawan crustal layer-blocks, Andu-Bisheng and Liyue-Banyue basemental layer-blocks. The basic characteristics of the basemental layer-blocks have been dicussed, and three intra-plate basin groups are identified. The intra-plate basins within Nansha micro-plate can be divided into three basin groups of Nanwei- Andu, Feixin-Nanhua, and Liyue-North Palawan based on the different geodynamics. In the light of pluralistic geodynamic concept, the upheaving force induced by the mid-crust plastic layer is proposed as the main dynamical force which causes the formation of the intra-plate basins within the Nansha micro-plate. Finally, models of a face-to-face dip-slip detachment of basemental layerblock and a unilateral dip-slip-detachment of basemental layer-block are put forward for the forming mechanisms of the Nanwei Andu and Liyue-North Palawan intra-plate basin groups, respectively.展开更多
In this paper, we present the combination of drain field plate (FP) and Schottky drain to improve the reverse blocking capability, and investigate the reverse blocking enhancement of drain FP in Schottky-drain AlGaN...In this paper, we present the combination of drain field plate (FP) and Schottky drain to improve the reverse blocking capability, and investigate the reverse blocking enhancement of drain FP in Schottky-drain AlGaN/GaN high-electron mobility transistors (HEMTs). Drain FP and gate FP were employed in a two-dimensional simulation to improve the reverse blocking voltage (VRB) and the forward blocking voltage (VFB). The drain-FP length, the gate-FP length and the passivation layer thickness were optimized. VRB and VFB were improved from -67 V and 134 V to -653 V and 868 V respectively after optimization. Simulation results suggest that the combination of drain FP and Schottky drain can enhance the reverse blocking capability significantly.展开更多
As one of the pivotal Gondwana-derived blocks,the kinematic history of the northern Qiangtang Block(in the Tibetan Plateau)remains unclear,mainly because quantitative paleomagnetic data to determine the paleoposition ...As one of the pivotal Gondwana-derived blocks,the kinematic history of the northern Qiangtang Block(in the Tibetan Plateau)remains unclear,mainly because quantitative paleomagnetic data to determine the paleoposition are sparse.Thus,for this study,we collected 226 samples(17 sites)from Triassic sedimentary rocks in the Raggyorcaka and Tuotuohe areas of the northern Qiangtang Block(NQB).Stepwise demagnetization isolated high temperature/field components from the samples.Both Early and Late Triassic datasets passed field tests at a 99%confidence level and were proved to be primary origins.Paleopoles were calculated to be at 24.9°N and 216.5°E with A95=8.2°(N=8)for the Early Triassic dataset,and at 68.1 N,179.9 E with A(95)=5.6°(N=37)for the Late Triassic,the latter being combined with a coeval volcanic dataset published previously.These paleopoles correspond to paleolatitudes of14.3°S±8.2°and 29.9 N15.6°,respectively.Combining previously published results,we reconstructed a three-stage northward drift process for the NQB.(1)The northern Qiangtang Block was located in the subtropical part of the southern hemisphere until the Early Triassic;(2)thereafter,the block rapidly drifted northward from southern to northern hemispheres during the Triassic;and(3)the block converged with the Eurasian continent in the Late Triassic.The^4800 km northward movement from the Early to Late Triassic corresponded to an average motion rate of^11.85 cm/yr.The rapid drift of the NQB after the Early Triassic led to a rapid transformation of the Tethys Ocean.展开更多
We applied the finite frequency tomography method to S wave data recorded by 350 broadband stations beneath the South China Block(SCB) and its surroundings from earthquakes occurring between July 2007 and July 2010,...We applied the finite frequency tomography method to S wave data recorded by 350 broadband stations beneath the South China Block(SCB) and its surroundings from earthquakes occurring between July 2007 and July 2010,to better understand upper mantle deformation.Differential travel-times in the pair of stations with appropriate weighting for each station are used in the inversion.Our results are consistent with previous tomography that show a high velocity anomaly beneath the Sichuan basin and a high velocity anomaly in the transition zone beneath the Yangtze Craton.However,the resolution of mantle heterogeneity provides new insight into the tectonic framework of subduction of Burmese lithosphere in the west part of the study region and subduction of oceanic lithosphere in the east.In the subduction realm,west of 107°E,a significant fast S-wave anomaly is located on the southeast of Sichuan Basin.East of 107°E,and two narrow and discontinuous fast S-wave anomalies occur at a depth of 400-600 km beneath the middle of the South China block overlain by the pronounced low S-wave anomalies at a depth of 100 and 400 km.If the fast anomalies located in the mantle transition zone represent stagnant slabs,their fragmented nature may suggest that they could be produced by different episodes of subduction beneath western Pacific island and the above slow velocity anomaly may associated with the back-arc regions of ongoing subduction.In addition,tomography also reveals an anomalously high S-wave velocity continental root extends eastward to a depth 400 km beneath the eastern Sichuan Basin.This anomaly may be related to eastern extrusion of Indian lithosphere associated with the collision of India and Eurasia.Moreover,our results also show large slow anomalies beneath the Red River fault region connected to deeper anomalies beneath the South China Fold Belt and South China Sea.AH these observations are consistent with the scenario that the South China block has been built by both of subduction of Paleopacific plate and eastward subduction of Burma microplate.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51605322)Shanxi Provincial Natural Science Foundation of China(Grant No.201901D111054)+1 种基金International Cooperation Project of Shanxi Province(Grant No.2016-002)Key Laboratory of Fluid and Power Machinery,Ministry of Education(Grant No.GZKF-201815).
文摘The spherical valve plate/cylinder block pair has the advantages of strong overturning resistance and large bearing area.However,the configurations of the unloading and pre-boosting triangular grooves on the spherical valve plate are different from those in the planar valve plate,resulting in special cavitation phenomenon on the spherical port plate pair.In order to study cavitation characteristics of spherical port plate pair,a dynamic CFD model of the piston pump including turbulence model,cavitation model and fluid compressibility is established.A detailed UDF compilation scheme is provided for modelling of the micron-sized spherical oil film mesh,which makes up for the lack of research on the meshing of the spherical oil film.In this paper,using CFD simulation tools,from the perspectives of pressure field,velocity field and gas volume fraction change,a detailed analysis of the transient evolution of the submerged cavitation jet in a axial piston pump with spherical valve plate is carried out.The study indicates the movement direction of the cavitation cloud cluster through the cloud image and the velocity vector direction of the observation point.The sharp decrease of velocity and gas volume fraction indicates the collapse phenomenon of bubbles on the part wall surface.These discoveries verify the special erosion effect in case of the spherical valve plate/cylinder block pair.The submerged cavitation jet generated by the unloading triangular grooves distributed on the spherical valve plate not only cause denudation of the inner wall surface of the valve plate,but also cause strong impact and denudation on the lower surface of the cylinder body.Finally,the direction of the unloading triangular groove was modified to extend the distance between it and the wall surface which can effectively alleviate the erosion effect.
基金Project supported by the Program for New Century Excellent Talents in University,China(Grant No.NCET-12-0915)the National Natural Science Foundation of China(Grant No.61204085)
文摘In this paper, the influence of a drain field plate (FP) on the forward blocking characteristics of an AlGaN/GaN high electron mobility transistor (HEMT) is investigated. The HEMT with only a gate FP is optimized, and breakdown voltage VBR is saturated at 1085 V for gate–drain spacing LGD ≥ 8 μm. On the basis of the HEMT with a gate FP, a drain FP is added with LGD=10 μm. For the length of the drain FP LDF ≤ 2 μm, VBR is almost kept at 1085 V, showing no degradation. When LDF exceeds 2 μm, VBR decreases obviously as LDF increases. Moreover, the larger the LDF, the larger the decrease of VBR. It is concluded that the distance between the gate edge and the drain FP edge should be larger than a certain value to prevent the drain FP from affecting the forward blocking voltage and the value should be equal to the LGD at which VBR begins to saturate in the first structure. The electric field and potential distribution are simulated and analyzed to account for the decrease of VBR.
基金Supported by National Natural Science Foundation of China(Grant Nos.51775362,51705351)International Cooperation Project of Shanxi Province(Grant No.2016-002)Natural Science Foundation of Shanxi Province(Grant No.201901D111054).
文摘The tribological properties of cylinder block/valve plate is an important consideration in the design of axial piston pump.The effect of materials and heat treatment on friction and wear properties has been studied in depth.Engi-neering experiences show that the speed and load also affect the tribological properties,but these have not been systematically analyzed.The purpose of this paper is to evaluate the tribological properties of the commonly used materials(CuPb1 5Sn5 and 38CrMoAl/42CrMo)for cylinder block/valve plate with different heat treatment and con-tact pressure at different speed.During the test,tribometer is used to simulate the contact pattern between the valve plate/cylinder block in axial piston pump,the friction coefficient,wear rate and surface topography are analyzed to evaluate the tribological properties of different types of friction samples at different speed.Results indicate that:(1)contact surface of the samples at 1800 r/min is more prone to adhesive wear than those at 500 r/min;(2)in the terms of wear resistance,quench-tempered and nitrided 38CrMoAl(38CrMoAl QTN for short)is better than quench-tem-pered and nitrided 42CrMo,although they are all commonly used materials in the axial piston pump;(3)2.5 MPa is the critical contact pressure of the interface between valve plate made of 38CrMoAl QTN and cylinder block made of CuPb1 5Sn5 on the tribometer,which implies the pressure bearing area at the bottom of the cylinder block should be carefully designed;(4)the valve plate/cylinder block made of 38CrMoAl QTN/CuPb15Sn5 exhibits good tribological properties in a real axial piston pump.This research is useful for the failure analysis and structural optimization design of the valve plates/cylinder block.
基金The National Basic Research Program of China ("973") under contract Nos 2009CB2194 and 2007CB411700the Major Knowledge Innovation Programs of the Chinese Academy of Sciences under contract No. kzcx2-yw-203-01+2 种基金the National Natural Science Foundation of China of China under contract No. 40676039the National Program of Sustaining Science and Technology of China under contract No. 2006BAB19B02the Program of the Ministry of Land and Natural Resources of China under contract No. GT-YQ-QQ-2008-1-02
文摘Layer-block tectonics (LBT) concept, with the core of pluralistic geodynamic outlook and multilayer-sliding tectonic outlook, is one of new keys to study 3-dimensional solid and its 4-dimensional evolution history of global tectonic system controlled by global geodynamics system. The LBT concept is applied to study the lithospheric tectonics of the southern South China Sea (SCS). Based on the analysis of about 30 000 km of geophysical and geological data, some layer-blocks in the Nansha micro-plate can be divided as Nansha ultra-crustal layer-block, Zengmu crustal layer-block, Nanwei (Rifleman bank)-Andu (Ardasier bank) and Liyue (Reed bank) North Palawan crustal layer-blocks, Andu-Bisheng and Liyue-Banyue basemental layer-blocks. The basic characteristics of the basemental layer-blocks have been dicussed, and three intra-plate basin groups are identified. The intra-plate basins within Nansha micro-plate can be divided into three basin groups of Nanwei- Andu, Feixin-Nanhua, and Liyue-North Palawan based on the different geodynamics. In the light of pluralistic geodynamic concept, the upheaving force induced by the mid-crust plastic layer is proposed as the main dynamical force which causes the formation of the intra-plate basins within the Nansha micro-plate. Finally, models of a face-to-face dip-slip detachment of basemental layerblock and a unilateral dip-slip-detachment of basemental layer-block are put forward for the forming mechanisms of the Nanwei Andu and Liyue-North Palawan intra-plate basin groups, respectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.61334002 and 61106106)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory,China(Grant No.ZHD201206)
文摘In this paper, we present the combination of drain field plate (FP) and Schottky drain to improve the reverse blocking capability, and investigate the reverse blocking enhancement of drain FP in Schottky-drain AlGaN/GaN high-electron mobility transistors (HEMTs). Drain FP and gate FP were employed in a two-dimensional simulation to improve the reverse blocking voltage (VRB) and the forward blocking voltage (VFB). The drain-FP length, the gate-FP length and the passivation layer thickness were optimized. VRB and VFB were improved from -67 V and 134 V to -653 V and 868 V respectively after optimization. Simulation results suggest that the combination of drain FP and Schottky drain can enhance the reverse blocking capability significantly.
基金Financial support for this study was jointly provided by the National Natural Science Foundation of China(Grant Nos.91855211.41421002,41674070,41702233,and 41774073)the Scientific Research Program Funded by Shaanxi Provincial Education Department(Grant No.17JK0784)+1 种基金the Natural Science Foundation of Shaanxi Province of China(Grant No.2017JQ4027)the Natural Sciences and Engineering Research Council of Canada(NSERC grant RGPIN-2019-04780)
文摘As one of the pivotal Gondwana-derived blocks,the kinematic history of the northern Qiangtang Block(in the Tibetan Plateau)remains unclear,mainly because quantitative paleomagnetic data to determine the paleoposition are sparse.Thus,for this study,we collected 226 samples(17 sites)from Triassic sedimentary rocks in the Raggyorcaka and Tuotuohe areas of the northern Qiangtang Block(NQB).Stepwise demagnetization isolated high temperature/field components from the samples.Both Early and Late Triassic datasets passed field tests at a 99%confidence level and were proved to be primary origins.Paleopoles were calculated to be at 24.9°N and 216.5°E with A95=8.2°(N=8)for the Early Triassic dataset,and at 68.1 N,179.9 E with A(95)=5.6°(N=37)for the Late Triassic,the latter being combined with a coeval volcanic dataset published previously.These paleopoles correspond to paleolatitudes of14.3°S±8.2°and 29.9 N15.6°,respectively.Combining previously published results,we reconstructed a three-stage northward drift process for the NQB.(1)The northern Qiangtang Block was located in the subtropical part of the southern hemisphere until the Early Triassic;(2)thereafter,the block rapidly drifted northward from southern to northern hemispheres during the Triassic;and(3)the block converged with the Eurasian continent in the Late Triassic.The^4800 km northward movement from the Early to Late Triassic corresponded to an average motion rate of^11.85 cm/yr.The rapid drift of the NQB after the Early Triassic led to a rapid transformation of the Tethys Ocean.
基金supported by National Natural Science Foundation of China(Grand No.41404042,41504071,41274123)Postdoctoral Science Foundation of China(Grand Nos.2014M552147, 2015T80888)Innovation drive Foundation of Central South University(Grand No.2016CX005)
文摘We applied the finite frequency tomography method to S wave data recorded by 350 broadband stations beneath the South China Block(SCB) and its surroundings from earthquakes occurring between July 2007 and July 2010,to better understand upper mantle deformation.Differential travel-times in the pair of stations with appropriate weighting for each station are used in the inversion.Our results are consistent with previous tomography that show a high velocity anomaly beneath the Sichuan basin and a high velocity anomaly in the transition zone beneath the Yangtze Craton.However,the resolution of mantle heterogeneity provides new insight into the tectonic framework of subduction of Burmese lithosphere in the west part of the study region and subduction of oceanic lithosphere in the east.In the subduction realm,west of 107°E,a significant fast S-wave anomaly is located on the southeast of Sichuan Basin.East of 107°E,and two narrow and discontinuous fast S-wave anomalies occur at a depth of 400-600 km beneath the middle of the South China block overlain by the pronounced low S-wave anomalies at a depth of 100 and 400 km.If the fast anomalies located in the mantle transition zone represent stagnant slabs,their fragmented nature may suggest that they could be produced by different episodes of subduction beneath western Pacific island and the above slow velocity anomaly may associated with the back-arc regions of ongoing subduction.In addition,tomography also reveals an anomalously high S-wave velocity continental root extends eastward to a depth 400 km beneath the eastern Sichuan Basin.This anomaly may be related to eastern extrusion of Indian lithosphere associated with the collision of India and Eurasia.Moreover,our results also show large slow anomalies beneath the Red River fault region connected to deeper anomalies beneath the South China Fold Belt and South China Sea.AH these observations are consistent with the scenario that the South China block has been built by both of subduction of Paleopacific plate and eastward subduction of Burma microplate.