Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reve...Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reveal the influence of piloti on the radiant environment of residential blocks systematically. Taking the city of Guangzhou as an example,using 3-D Unsteady State Heat Balance Radiation Calculation Method,this paper shows that the mean radiant temperature( MRT) under piloti area increases with the increase of piloti ratio,and especially when piloti ratio is equal to 100%,the MRT increase trend becomes sharp. The MRT of exposed area decreases with the increase of piloti ratio,especially when piloti ratio reaches 100%,the decrease trend of MRT becomes sharp,which offers the reference for the study on piloti design in subtropical climate zones and further research on living environment by CFD simulation in residential blocks.展开更多
Solid-state fuel ignition was given by Chu and Bobin according to the hydrodynamic theory at x = 0 qualitatively. A high threshold energy flux density, i.e., E* = 4.3 × 10^12 J/m2, has been reached. Recently, fa...Solid-state fuel ignition was given by Chu and Bobin according to the hydrodynamic theory at x = 0 qualitatively. A high threshold energy flux density, i.e., E* = 4.3 × 10^12 J/m2, has been reached. Recently, fast ignition by employing clean petawatt-picosecond laser pulses was performed. The anomalous phenomena were observed to be based on suppression of prepulses. The accelerated plasma block was used to ignite deuterium tritium fuel at solid-state density. The detailed analysis of the thermonuclear wave propagation was investigated. Also the fusion conditions at x ≠ 0 layers were clarified by exactly solving hydrodynamic equations for plasma block ignition. In this paper, the applied physical mechanisms are determined for nonlinear force laser driven plasma blocks, thermonuclear reaction, heat transfer, electro,ion equilibration, stopping power of alpha particles, bremsstrahlung, expansion, density dependence, and fluid dynamics. New ignition conditions may be obtained by using temperature equations, including the density profile that is obtained by the continuity equation and expansion velocity. The density is only a function of x and independent of time. The ignition energy flux density, Et*, for the x ≠ 0 layers is 1.95 × 1012 J/m2. Thus threshold ignition energy in comparison with that at x =0 layers would be reduced to less than 50 percent.展开更多
A Newton multigrid method is developed for one-dimensional (1D) and two- dimensional (2D) steady-state shallow water equations (SWEs) with topography and dry areas. The nonlinear system arising from the well-bal...A Newton multigrid method is developed for one-dimensional (1D) and two- dimensional (2D) steady-state shallow water equations (SWEs) with topography and dry areas. The nonlinear system arising from the well-balanced finite volume discretization of the steady-state SWEs is solved by the Newton method as the outer iteration and a geometric multigrid method with the block symmetric Gauss-Seidel smoother as the inner iteration. The proposed Newton multigrid method makes use of the local residual to regularize the Jacobian matrix of the Newton iteration, and can handle the steady- state problem with wet/dry transition. Several numerical experiments are conducted to demonstrate the efficiency, robustness, and well-balanced property of the proposed method. The relation between the convergence behavior of the Newton multigrid method and the distribution of the eigenvalues of the iteration matrix is detailedly discussed.展开更多
The highest priorities of any civilized country are in providing interests of social safety.The anthropogenic influence on geological environment is becoming greater because of the human activities increase. That’s w...The highest priorities of any civilized country are in providing interests of social safety.The anthropogenic influence on geological environment is becoming greater because of the human activities increase. That’s why anthropogenic-tectonic earthquake problem has become important recently.It appeared as a hypothesis in the 30 s and became much clearer in 60 s.The anthropogenic-tectonic earthquake epiceneters are located not far from the surface and,as a rule。展开更多
直流系统是支撑高比例新能源接入与灵活高效用能的重要技术方向。固态式直流断路器(solid state DC circuit breaker,SSCB)具有开断速度极快、无电弧、寿命长等优点,在中低压直流系统的故障保护中得到广泛应用。随着电力电子器件的发展...直流系统是支撑高比例新能源接入与灵活高效用能的重要技术方向。固态式直流断路器(solid state DC circuit breaker,SSCB)具有开断速度极快、无电弧、寿命长等优点,在中低压直流系统的故障保护中得到广泛应用。随着电力电子器件的发展,固态式直流断路器的拓扑结构、工作性能也在不断进步。为此基于逆阻型集成门极换流晶闸管(intergated gate commutate thyristor,IGCT),提出了一种新型的固态式直流断路器结构及设计方法,通流支路采用逆阻IGCT反并联结构实现双向通流,缓冲支路采用金属氧化物避雷器(metal oxide varistor,MOV)-电容结构来抑制过电压,吸能支路采用MOV吸收系统能量。进一步地,给出了关键元器件的参数设计方法,并验证了有效性;设计了性能良好的重力热管散热器,单个模块散热功率可达700 W;提出了主被动结合的控保策略,提高断路器的保护性能。最后,研制了固态式直流断路器样机,可用于750 V以内的低压直流系统,额定通流可达2 kA,可在百微秒内开断10 kA故障电流,成本低、体积小、高可靠,具有良好的应用前景。展开更多
基金Sponsored by the Strategic Japanese-Chinese Cooperation Program (Grant No.2011DFA91210)the Fundamental Research Funds for the Central Universities (Grant No.HIT.NSRIF.2014075),the Fundamental Research Funds for the Central Universities (Grant No.HIT.KISTP.201419)the Natural Science Foundation of Heilongjiang Province (Grant No.E201316)
文摘Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reveal the influence of piloti on the radiant environment of residential blocks systematically. Taking the city of Guangzhou as an example,using 3-D Unsteady State Heat Balance Radiation Calculation Method,this paper shows that the mean radiant temperature( MRT) under piloti area increases with the increase of piloti ratio,and especially when piloti ratio is equal to 100%,the MRT increase trend becomes sharp. The MRT of exposed area decreases with the increase of piloti ratio,especially when piloti ratio reaches 100%,the decrease trend of MRT becomes sharp,which offers the reference for the study on piloti design in subtropical climate zones and further research on living environment by CFD simulation in residential blocks.
基金Project supported by the Fund from Islamic Azad University of Gachsaran Branch of Iran
文摘Solid-state fuel ignition was given by Chu and Bobin according to the hydrodynamic theory at x = 0 qualitatively. A high threshold energy flux density, i.e., E* = 4.3 × 10^12 J/m2, has been reached. Recently, fast ignition by employing clean petawatt-picosecond laser pulses was performed. The anomalous phenomena were observed to be based on suppression of prepulses. The accelerated plasma block was used to ignite deuterium tritium fuel at solid-state density. The detailed analysis of the thermonuclear wave propagation was investigated. Also the fusion conditions at x ≠ 0 layers were clarified by exactly solving hydrodynamic equations for plasma block ignition. In this paper, the applied physical mechanisms are determined for nonlinear force laser driven plasma blocks, thermonuclear reaction, heat transfer, electro,ion equilibration, stopping power of alpha particles, bremsstrahlung, expansion, density dependence, and fluid dynamics. New ignition conditions may be obtained by using temperature equations, including the density profile that is obtained by the continuity equation and expansion velocity. The density is only a function of x and independent of time. The ignition energy flux density, Et*, for the x ≠ 0 layers is 1.95 × 1012 J/m2. Thus threshold ignition energy in comparison with that at x =0 layers would be reduced to less than 50 percent.
基金Project supported by the National Natural Science Foundation of China(Nos.91330205and 11421101)the National Key Research and Development Program of China(No.2016YFB0200603)
文摘A Newton multigrid method is developed for one-dimensional (1D) and two- dimensional (2D) steady-state shallow water equations (SWEs) with topography and dry areas. The nonlinear system arising from the well-balanced finite volume discretization of the steady-state SWEs is solved by the Newton method as the outer iteration and a geometric multigrid method with the block symmetric Gauss-Seidel smoother as the inner iteration. The proposed Newton multigrid method makes use of the local residual to regularize the Jacobian matrix of the Newton iteration, and can handle the steady- state problem with wet/dry transition. Several numerical experiments are conducted to demonstrate the efficiency, robustness, and well-balanced property of the proposed method. The relation between the convergence behavior of the Newton multigrid method and the distribution of the eigenvalues of the iteration matrix is detailedly discussed.
文摘The highest priorities of any civilized country are in providing interests of social safety.The anthropogenic influence on geological environment is becoming greater because of the human activities increase. That’s why anthropogenic-tectonic earthquake problem has become important recently.It appeared as a hypothesis in the 30 s and became much clearer in 60 s.The anthropogenic-tectonic earthquake epiceneters are located not far from the surface and,as a rule。