Blockchain technology has witnessed a burgeoning integration into diverse realms of economic and societal development.Nevertheless,scalability challenges,characterized by diminished broadcast efficiency,heightened com...Blockchain technology has witnessed a burgeoning integration into diverse realms of economic and societal development.Nevertheless,scalability challenges,characterized by diminished broadcast efficiency,heightened communication overhead,and escalated storage costs,have significantly constrained the broad-scale application of blockchain.This paper introduces a novel Encode-and CRT-based Scalability Scheme(ECSS),meticulously refined to enhance both block broadcasting and storage.Primarily,ECSS categorizes nodes into distinct domains,thereby reducing the network diameter and augmenting transmission efficiency.Secondly,ECSS streamlines block transmission through a compact block protocol and robust RS coding,which not only reduces the size of broadcasted blocks but also ensures transmission reliability.Finally,ECSS utilizes the Chinese remainder theorem,designating the block body as the compression target and mapping it to multiple modules to achieve efficient storage,thereby alleviating the storage burdens on nodes.To evaluate ECSS’s performance,we established an experimental platformand conducted comprehensive assessments.Empirical results demonstrate that ECSS attains superior network scalability and stability,reducing communication overhead by an impressive 72% and total storage costs by a substantial 63.6%.展开更多
In blockchain-based unmanned aerial vehicle(UAV)communication systems,the length of a block affects the performance of the blockchain.The transmission performance of blocks in the form of finite character segments is ...In blockchain-based unmanned aerial vehicle(UAV)communication systems,the length of a block affects the performance of the blockchain.The transmission performance of blocks in the form of finite character segments is also affected by the block length.Therefore,it is crucial to balance the transmission performance and blockchain performance of blockchain communication systems,especially in wireless environments involving UAVs.This paper investigates a secure transmission scheme for blocks in blockchain-based UAV communication systems to prevent the information contained in blocks from being completely eavesdropped during transmission.In our scheme,using a friendly jamming UAV to emit jamming signals diminishes the quality of the eavesdropping channel,thus enhancing the communication security performance of the source UAV.Under the constraints of maneuverability and transmission power of the UAV,the joint design of UAV trajectories,transmission power,and block length are proposed to maximize the average minimum secrecy rate(AMSR).Since the optimization problem is non-convex and difficult to solve directly,we first decompose the optimization problem into subproblems of trajectory optimization,transmission power optimization,and block length optimization.Then,based on firstorder approximation techniques,these subproblems are reformulated as convex optimization problems.Finally,we utilize an alternating iteration algorithm based on the successive convex approximation(SCA)technique to solve these subproblems iteratively.The simulation results demonstrate that our proposed scheme can achieve secure transmission for blocks while maintaining the performance of the blockchain.展开更多
[ Objective] To investigate the blocking effects of spleen vaccine on vertical transmission of classical swine fever virus (CSFV) in sows. [ Method] Sows infected by CSFV were selected from three large-scale pig far...[ Objective] To investigate the blocking effects of spleen vaccine on vertical transmission of classical swine fever virus (CSFV) in sows. [ Method] Sows infected by CSFV were selected from three large-scale pig farms and they were randomly divided into group Ⅰ, group Ⅱ and control group. The sows in the group Ⅰ were vaccinated with CSF spleen vaccine at a 1.5 times normal dose per pig; those in the group Ⅱ were vaccinated with CSF spleen vaccine at a 2.0 times normal dose per pig; and those in the control group were vaccinated with cell vaccine at a 4.0 times normal- dose per pig. The CSF antigens of piglets were detected by enzyme-linked immunosorbent assay (ELISA). [ Result] The antigen positive rate of piglets in the experimental group (18.5%) was significantly lower than that in the control group (48.1% ). No significant difference was found be- tween the group Ⅰ and the group Ⅱ. [ Condmion] CSF spleen vaccine has good blocking effects on vertical transmission of CSFV in sows.展开更多
In this paper,we investigate the evolution of spatiotemporal patterns and synchronization transitions in dependence on the information transmission delay and ion channel blocking in scale-free neuronal networks.As the...In this paper,we investigate the evolution of spatiotemporal patterns and synchronization transitions in dependence on the information transmission delay and ion channel blocking in scale-free neuronal networks.As the underlying model of neuronal dynamics,we use the Hodgkin-Huxley equations incorporating channel blocking and intrinsic noise.It is shown that delays play a significant yet subtle role in shaping the dynamics of neuronal networks.In particular,regions of irregular and regular propagating excitatory fronts related to the synchronization transitions appear intermittently as the delay increases.Moreover,the fraction of working sodium and potassium ion channels can also have a significant impact on the spatiotemporal dynamics of neuronal networks.As the fraction of blocked sodium channels increases,the frequency of excitatory events decreases,which in turn manifests as an increase in the neuronal synchrony that,however,is dysfunctional due to the virtual absence of large-amplitude excitations.Expectedly,we also show that larger coupling strengths improve synchronization irrespective of the information transmission delay and channel blocking.The presented results are also robust against the variation of the network size,thus providing insights that could facilitate understanding of the joint impact of ion channel blocking and information transmission delay on the spatiotemporal dynamics of neuronal networks.展开更多
The worldwide decline over the last decade in the number of clinical cases of malaria does not mean an end to the universal problem of malaria pathogenesis in those afflicted by infection. Resistance to drugs, higher ...The worldwide decline over the last decade in the number of clinical cases of malaria does not mean an end to the universal problem of malaria pathogenesis in those afflicted by infection. Resistance to drugs, higher risk of disease relapse and failure to maintain effective memory of the pathogen in the absence of persistent exposure result in the repeated failure of anti-malarialtreatments. The artificial blocking of transmission of the Plasmodium parasite between hosts from human to Anopheles mosquito, and vice versa, is crucial to restricting the spread of disease. However, a limited knowledge of the molecular mechanisms in operation for transmission of malaria has impeded progress towards a transmission-blocking vaccine. This review highlights the role of anti-malarial immune responses to antigen-specific targets for designing effective vaccines against the sexual stages of Plasmodium that occur within the invertebrate vector. In particular, artificial induction of gametocyte and ookinete apoptosis as a novel means to prevent gamete fertilization and oocyte development, respectively, is highlighted. This and other recent insights into our understanding of the molecular regulation of transmission-blocking immunity are discussed and future prospects considered.展开更多
An analytic method is used to study the reflection and transmission coefficients of the double submerged rectangular blocks (DSRBs) in oblique waves. The scattering potentials are obtained by means of the eigenfunct...An analytic method is used to study the reflection and transmission coefficients of the double submerged rectangular blocks (DSRBs) in oblique waves. The scattering potentials are obtained by means of the eigenfunction expansion method, and expressions for the reflection and transmission coefficients are determined. The boundary element method is employed to verify the correctness of the present analytical method. The DSRBs have better performance than the single submerged rectangular block (SSRB) in certain cases. The reflection and transmission properties of the DSRBs are investigated for some specific cases, and the influences of the geometric parameters are also presented.展开更多
As an alternative to satellite communications,multi-hop relay networks can be deployed for maritime long-distance communications.Distinct from terrestrial environment,marine radio signals are affected by many factors,...As an alternative to satellite communications,multi-hop relay networks can be deployed for maritime long-distance communications.Distinct from terrestrial environment,marine radio signals are affected by many factors,e.g.,weather conditions,evaporation ducting,and ship rocking caused by waves.To ensure the data transmission reliability,the block Markov superposition transmission(BMST)codes,which are easily configurable and have predictable performance,are applied in this study.Meanwhile,the physical-layer network coding(PNC)scheme with spatial modulation(SM)is adopted to improve the spectrum utilization.For the BMST-SMPNC system,we propose an iterative algorithm,which utilizes the channel observations and the a priori information from BMST decoder,to compute the soft information corresponding to the XORed bits constructed by the relay node.The results indicate that the proposed scheme outperforms the convolutional coded SM-PNC over fast-fading Rician channels.Especially,the performance can be easily improved in high spatial correlation maritime channel by increasing the memory m.展开更多
In free-space optical(FSO) communications, the performance of the communication systems is severely degraded by atmospheric turbulence. Channel coding and diversity techniques are commonly used to combat channel fadin...In free-space optical(FSO) communications, the performance of the communication systems is severely degraded by atmospheric turbulence. Channel coding and diversity techniques are commonly used to combat channel fading induced by atmospheric turbulence. In this paper, we present the generalized block Markov superposition transmission(GBMST) of repetition codes to improve time diversity. In the GBMST scheme, information sub-blocks are transmitted in the block Markov superposition manner, with possibly different transmission memories. Based on analyzing an equivalent system, a lower bound on the bit-error-rate(BER) of the proposed scheme is presented. Simulation results demonstrate that, under a wide range of turbulence conditions, the proposed scheme improves diversity gain with only a slight reduction of transmission rate. In particular, with encoding memory sequence(0, 0, 8) and transmission rate 1/3, a diversity order of eleven is achieved under moderate turbulence conditions. Numerical results also show that, the GBMST systems with appropriate settings can approach the derived lower bound, implying that full diversity is achievable.展开更多
In order to improve the poor performance of Space-Time Block Coding (STBC) in a downlink correlated fading environment, a closed loop scheme is proposed. With the known channel fading statistics fed from the receiver,...In order to improve the poor performance of Space-Time Block Coding (STBC) in a downlink correlated fading environment, a closed loop scheme is proposed. With the known channel fading statistics fed from the receiver, eigenbeamforming is utilized to improve the performance of STBC at the transmitter. The new system achieves the array and diversity gain simultaneously. Because reduced dimension processing is adopted, the proposed system has a relative simple structure compared with the traditional beamforming system. The validity of the scheme is verified in several situations by simulation experiments.展开更多
In this paper,we present a new class of spatially coupled codes obtained by using both non-recursive and recursive block-oriented superposition.The resulting codes are termed as bidirectional block Markov superpositio...In this paper,we present a new class of spatially coupled codes obtained by using both non-recursive and recursive block-oriented superposition.The resulting codes are termed as bidirectional block Markov superposition transmission(BiBMST)codes.Firstly,we perform an iterative decoding threshold analysis according to protograph-based extrinsic information transfer(PEXIT)charts for the BiBMST codes over the binary erasure channels(BECs).Secondly,we derive the generator and parity-check matrices of the BiBMST codes.Thirdly,extensive numerical results are presented to show the advantages of the proposed BiBMST codes.Particularly,our numerical results show that,under the constraint of an equal decoding latency,the BiBMST codes perform better than the recursive BMST(rBMST)codes.However,the simulation results show that,in finite-length regime,negligible performance gain is obtained by increasing the encoding memory.We solve this limitation by introducing partial superposition,and the resulting codes are termed as partially-connected BiBMST(PC-BiBMST)code.Analytical results have confirmed the advantages of the PC-BiBMST codes over the original BiBMST codes.We also present extensive simulation results to show the performance advantages of the PC-BiBMST codes over the spatially coupled low-density parity-check(SC-LDPC)codes,spatially coupled generalized LDPC(SC-GLDPC)codes,and the original BiBMST codes in the finite-length regime.展开更多
After hydraulic fracturing treatment,a reduction in permeability caused by the invasion of fracturing fluids is an inevitable problem,which is called water blocking damage.Therefore,it is important to mitigate and eli...After hydraulic fracturing treatment,a reduction in permeability caused by the invasion of fracturing fluids is an inevitable problem,which is called water blocking damage.Therefore,it is important to mitigate and eliminate water blocking damage to improve the flow capacities of formation fluids and flowback rates of the fracturing fluid.However,the steady-state core flow method cannot quickly and accurately evaluate the effects of chemical agents in enhancing the fluid flow capacities in tight reservoirs.This paper introduces a time-saving and accurate method,pressure transmission test(PTT),which can quickly and quantitatively evaluate the liquid flow capacities and gas-drive flowback rates of a new nanoemulsion.Furthermore,scanning electron microscopy(SEM)was used to analyze the damage mechanism of different fluids and the adsorption of chemical agents on the rock surface.Parallel core flow experiments were used to evaluate the effects of the nanoemulsion on enhancing flowback rates in heterogeneous tight reservoirs.Experimental results show that the water blocking damage mechanisms differ in matrices and fractures.The main channels for gas channeling are fractures in cracked cores and pores in non-cracked cores.Cracked cores suffer less damage from water blocking than non-cracked cores,but have a lower potential to reduce water saturation.The PTT and SEM results show that the permeability reduction in tight sandstones caused by invasion of external fluids can be list as guar gum fracturing fluid>slickwater>brine.Parallel core flow experiments show that for low-permeability heterogenous s andstone reservoirs with a certain permeability ratio,the nanoemulsion can not only reduce reverse gas channeling degree,but also increase the flowback rate of the fracturing fluid.The nanoemulsion system provides a new solution to mitigate and eliminate water blocking damage caused by fracturing fluids in tight sandstone gas reservoirs.展开更多
With the development of multimedia communication services, robust video transmission over wireless environment poses many challenges. A new UEP_BTC_STBC_OFDM system is proposed to provide unequal error protection for ...With the development of multimedia communication services, robust video transmission over wireless environment poses many challenges. A new UEP_BTC_STBC_OFDM system is proposed to provide unequal error protection for the source coded video stream in dispersive fading channel. The scheme concatenates the Block Turbo Code (BTC) with the Space-Time Block Code (STBC) for an OFDM system. With the proposed system, both the good error correcting capability of BTC and the concurrent large diversity gain characteristic of STBC can be achieved simultaneously with low encoding and decoding complexity. Furthermore, by combining with the data partition of H. 264 and different BTC codes, this system can guarantee high QoS control of video transmission. Simulation result shows that the proposed system outoerforms other reported schemes and has good performance of video transmission.展开更多
乙型肝炎病毒(hepatitis B virus,HBV)是一种常见的全球血液传播病原体,其导致的部分慢性乙肝患者可发展为肝硬化和肝癌,甚至导致死亡[1]。据统计,全世界约有640万名五岁以下儿童患有慢性HBV感染,中国是世界上HBV感染负担最大的国家,201...乙型肝炎病毒(hepatitis B virus,HBV)是一种常见的全球血液传播病原体,其导致的部分慢性乙肝患者可发展为肝硬化和肝癌,甚至导致死亡[1]。据统计,全世界约有640万名五岁以下儿童患有慢性HBV感染,中国是世界上HBV感染负担最大的国家,2019年中国约2.96亿人感染HBV,每年150万新增感染,其中,围产期母婴传播是HBV传播的主要途径之一,新生儿乙肝感染的风险为95%[2]。目前,我国育龄期妇女HBsAg的阳性率为5%~6%,HBsAg阳性孕妇的新生儿是HBV感染的高危人群[3]。阻断母婴传播是预防HBV的源头,母婴阻断主要是通过一定的医疗技术手段,阻止母体HBV传播给婴幼儿的方式。研究表明,母婴阻断对于新生儿乙肝预防和人类生命健康具有重要意义[4]。本文对围产期HBV母婴传播阻断进行综述。展开更多
文摘Blockchain technology has witnessed a burgeoning integration into diverse realms of economic and societal development.Nevertheless,scalability challenges,characterized by diminished broadcast efficiency,heightened communication overhead,and escalated storage costs,have significantly constrained the broad-scale application of blockchain.This paper introduces a novel Encode-and CRT-based Scalability Scheme(ECSS),meticulously refined to enhance both block broadcasting and storage.Primarily,ECSS categorizes nodes into distinct domains,thereby reducing the network diameter and augmenting transmission efficiency.Secondly,ECSS streamlines block transmission through a compact block protocol and robust RS coding,which not only reduces the size of broadcasted blocks but also ensures transmission reliability.Finally,ECSS utilizes the Chinese remainder theorem,designating the block body as the compression target and mapping it to multiple modules to achieve efficient storage,thereby alleviating the storage burdens on nodes.To evaluate ECSS’s performance,we established an experimental platformand conducted comprehensive assessments.Empirical results demonstrate that ECSS attains superior network scalability and stability,reducing communication overhead by an impressive 72% and total storage costs by a substantial 63.6%.
基金supported in part by the National Key R&D Program of China under Grant 2022YFB3104503in part by the China Postdoctoral Science Foundation under Grant 2024M750199+1 种基金in part by the National Natural Science Foundation of China under Grants 62202054,62002022 and 62472251in part by the Fundamental Research Funds for the Central Universities under Grant BLX202360.
文摘In blockchain-based unmanned aerial vehicle(UAV)communication systems,the length of a block affects the performance of the blockchain.The transmission performance of blocks in the form of finite character segments is also affected by the block length.Therefore,it is crucial to balance the transmission performance and blockchain performance of blockchain communication systems,especially in wireless environments involving UAVs.This paper investigates a secure transmission scheme for blocks in blockchain-based UAV communication systems to prevent the information contained in blocks from being completely eavesdropped during transmission.In our scheme,using a friendly jamming UAV to emit jamming signals diminishes the quality of the eavesdropping channel,thus enhancing the communication security performance of the source UAV.Under the constraints of maneuverability and transmission power of the UAV,the joint design of UAV trajectories,transmission power,and block length are proposed to maximize the average minimum secrecy rate(AMSR).Since the optimization problem is non-convex and difficult to solve directly,we first decompose the optimization problem into subproblems of trajectory optimization,transmission power optimization,and block length optimization.Then,based on firstorder approximation techniques,these subproblems are reformulated as convex optimization problems.Finally,we utilize an alternating iteration algorithm based on the successive convex approximation(SCA)technique to solve these subproblems iteratively.The simulation results demonstrate that our proposed scheme can achieve secure transmission for blocks while maintaining the performance of the blockchain.
基金supported by the Scientific Research Project Foundation of Jiangxi Provincial Education Department(GJJ08372)
文摘[ Objective] To investigate the blocking effects of spleen vaccine on vertical transmission of classical swine fever virus (CSFV) in sows. [ Method] Sows infected by CSFV were selected from three large-scale pig farms and they were randomly divided into group Ⅰ, group Ⅱ and control group. The sows in the group Ⅰ were vaccinated with CSF spleen vaccine at a 1.5 times normal dose per pig; those in the group Ⅱ were vaccinated with CSF spleen vaccine at a 2.0 times normal dose per pig; and those in the control group were vaccinated with cell vaccine at a 4.0 times normal- dose per pig. The CSF antigens of piglets were detected by enzyme-linked immunosorbent assay (ELISA). [ Result] The antigen positive rate of piglets in the experimental group (18.5%) was significantly lower than that in the control group (48.1% ). No significant difference was found be- tween the group Ⅰ and the group Ⅱ. [ Condmion] CSF spleen vaccine has good blocking effects on vertical transmission of CSFV in sows.
基金supported by the National Natural Science Foundation of China(11172017 and 10972001)the Fujian Natural Science Foundation of China(2009J05004)a Key Project of Fujian Provincial Universities(Information Technology Research Based on Mathematics)
文摘In this paper,we investigate the evolution of spatiotemporal patterns and synchronization transitions in dependence on the information transmission delay and ion channel blocking in scale-free neuronal networks.As the underlying model of neuronal dynamics,we use the Hodgkin-Huxley equations incorporating channel blocking and intrinsic noise.It is shown that delays play a significant yet subtle role in shaping the dynamics of neuronal networks.In particular,regions of irregular and regular propagating excitatory fronts related to the synchronization transitions appear intermittently as the delay increases.Moreover,the fraction of working sodium and potassium ion channels can also have a significant impact on the spatiotemporal dynamics of neuronal networks.As the fraction of blocked sodium channels increases,the frequency of excitatory events decreases,which in turn manifests as an increase in the neuronal synchrony that,however,is dysfunctional due to the virtual absence of large-amplitude excitations.Expectedly,we also show that larger coupling strengths improve synchronization irrespective of the information transmission delay and channel blocking.The presented results are also robust against the variation of the network size,thus providing insights that could facilitate understanding of the joint impact of ion channel blocking and information transmission delay on the spatiotemporal dynamics of neuronal networks.
文摘The worldwide decline over the last decade in the number of clinical cases of malaria does not mean an end to the universal problem of malaria pathogenesis in those afflicted by infection. Resistance to drugs, higher risk of disease relapse and failure to maintain effective memory of the pathogen in the absence of persistent exposure result in the repeated failure of anti-malarialtreatments. The artificial blocking of transmission of the Plasmodium parasite between hosts from human to Anopheles mosquito, and vice versa, is crucial to restricting the spread of disease. However, a limited knowledge of the molecular mechanisms in operation for transmission of malaria has impeded progress towards a transmission-blocking vaccine. This review highlights the role of anti-malarial immune responses to antigen-specific targets for designing effective vaccines against the sexual stages of Plasmodium that occur within the invertebrate vector. In particular, artificial induction of gametocyte and ookinete apoptosis as a novel means to prevent gamete fertilization and oocyte development, respectively, is highlighted. This and other recent insights into our understanding of the molecular regulation of transmission-blocking immunity are discussed and future prospects considered.
基金This proiect was supported by the Natural Science Foundation of Guangdong Province under contract No 04000377.
文摘An analytic method is used to study the reflection and transmission coefficients of the double submerged rectangular blocks (DSRBs) in oblique waves. The scattering potentials are obtained by means of the eigenfunction expansion method, and expressions for the reflection and transmission coefficients are determined. The boundary element method is employed to verify the correctness of the present analytical method. The DSRBs have better performance than the single submerged rectangular block (SSRB) in certain cases. The reflection and transmission properties of the DSRBs are investigated for some specific cases, and the influences of the geometric parameters are also presented.
基金the National Key Research and Development Program of China(No.2017YFE0112600)the National Science Foundation of China[No.61971454,No.91438101&No.61771499]the National Science Foundation of Guangdong,China[No.2016A030308008].
文摘As an alternative to satellite communications,multi-hop relay networks can be deployed for maritime long-distance communications.Distinct from terrestrial environment,marine radio signals are affected by many factors,e.g.,weather conditions,evaporation ducting,and ship rocking caused by waves.To ensure the data transmission reliability,the block Markov superposition transmission(BMST)codes,which are easily configurable and have predictable performance,are applied in this study.Meanwhile,the physical-layer network coding(PNC)scheme with spatial modulation(SM)is adopted to improve the spectrum utilization.For the BMST-SMPNC system,we propose an iterative algorithm,which utilizes the channel observations and the a priori information from BMST decoder,to compute the soft information corresponding to the XORed bits constructed by the relay node.The results indicate that the proposed scheme outperforms the convolutional coded SM-PNC over fast-fading Rician channels.Especially,the performance can be easily improved in high spatial correlation maritime channel by increasing the memory m.
基金partially supported by the Basic Research Project of Guangdong Provincial Natural Science Foundation (No.2016A030308008)the National Natural Science Foundation of China (No.91438101 and No.61501206)the National Basic Research Program of China (973 Program) (No.2012CB316100)
文摘In free-space optical(FSO) communications, the performance of the communication systems is severely degraded by atmospheric turbulence. Channel coding and diversity techniques are commonly used to combat channel fading induced by atmospheric turbulence. In this paper, we present the generalized block Markov superposition transmission(GBMST) of repetition codes to improve time diversity. In the GBMST scheme, information sub-blocks are transmitted in the block Markov superposition manner, with possibly different transmission memories. Based on analyzing an equivalent system, a lower bound on the bit-error-rate(BER) of the proposed scheme is presented. Simulation results demonstrate that, under a wide range of turbulence conditions, the proposed scheme improves diversity gain with only a slight reduction of transmission rate. In particular, with encoding memory sequence(0, 0, 8) and transmission rate 1/3, a diversity order of eleven is achieved under moderate turbulence conditions. Numerical results also show that, the GBMST systems with appropriate settings can approach the derived lower bound, implying that full diversity is achievable.
文摘In order to improve the poor performance of Space-Time Block Coding (STBC) in a downlink correlated fading environment, a closed loop scheme is proposed. With the known channel fading statistics fed from the receiver, eigenbeamforming is utilized to improve the performance of STBC at the transmitter. The new system achieves the array and diversity gain simultaneously. Because reduced dimension processing is adopted, the proposed system has a relative simple structure compared with the traditional beamforming system. The validity of the scheme is verified in several situations by simulation experiments.
基金supported by the National Natural Science Foundation of China(Nos.62271233,12271215,and 62261003)the Basic Research Program of Guangzhou Municipal Science and Technology Bureau(No.202201020036)the Guangdong Provincial Natural Science Foundation(Nos.2022A1515010029 and 2021A1515011906).
文摘In this paper,we present a new class of spatially coupled codes obtained by using both non-recursive and recursive block-oriented superposition.The resulting codes are termed as bidirectional block Markov superposition transmission(BiBMST)codes.Firstly,we perform an iterative decoding threshold analysis according to protograph-based extrinsic information transfer(PEXIT)charts for the BiBMST codes over the binary erasure channels(BECs).Secondly,we derive the generator and parity-check matrices of the BiBMST codes.Thirdly,extensive numerical results are presented to show the advantages of the proposed BiBMST codes.Particularly,our numerical results show that,under the constraint of an equal decoding latency,the BiBMST codes perform better than the recursive BMST(rBMST)codes.However,the simulation results show that,in finite-length regime,negligible performance gain is obtained by increasing the encoding memory.We solve this limitation by introducing partial superposition,and the resulting codes are termed as partially-connected BiBMST(PC-BiBMST)code.Analytical results have confirmed the advantages of the PC-BiBMST codes over the original BiBMST codes.We also present extensive simulation results to show the performance advantages of the PC-BiBMST codes over the spatially coupled low-density parity-check(SC-LDPC)codes,spatially coupled generalized LDPC(SC-GLDPC)codes,and the original BiBMST codes in the finite-length regime.
基金financially supported by the National Science Foundation of China(Grant No.51804033)China Postdoctoral Science and Foundation(Grant No.2018M641254)the National Science and Technology Major Projects of China(Grant Nos.2016ZX05051,2016ZX05014-005,and 2017ZX05030)。
文摘After hydraulic fracturing treatment,a reduction in permeability caused by the invasion of fracturing fluids is an inevitable problem,which is called water blocking damage.Therefore,it is important to mitigate and eliminate water blocking damage to improve the flow capacities of formation fluids and flowback rates of the fracturing fluid.However,the steady-state core flow method cannot quickly and accurately evaluate the effects of chemical agents in enhancing the fluid flow capacities in tight reservoirs.This paper introduces a time-saving and accurate method,pressure transmission test(PTT),which can quickly and quantitatively evaluate the liquid flow capacities and gas-drive flowback rates of a new nanoemulsion.Furthermore,scanning electron microscopy(SEM)was used to analyze the damage mechanism of different fluids and the adsorption of chemical agents on the rock surface.Parallel core flow experiments were used to evaluate the effects of the nanoemulsion on enhancing flowback rates in heterogeneous tight reservoirs.Experimental results show that the water blocking damage mechanisms differ in matrices and fractures.The main channels for gas channeling are fractures in cracked cores and pores in non-cracked cores.Cracked cores suffer less damage from water blocking than non-cracked cores,but have a lower potential to reduce water saturation.The PTT and SEM results show that the permeability reduction in tight sandstones caused by invasion of external fluids can be list as guar gum fracturing fluid>slickwater>brine.Parallel core flow experiments show that for low-permeability heterogenous s andstone reservoirs with a certain permeability ratio,the nanoemulsion can not only reduce reverse gas channeling degree,but also increase the flowback rate of the fracturing fluid.The nanoemulsion system provides a new solution to mitigate and eliminate water blocking damage caused by fracturing fluids in tight sandstone gas reservoirs.
基金Supported by the High Technology Research and Development Programme of China (No.2003AA103810) and the National Natural Science Foundation of China (No.60202006).
文摘With the development of multimedia communication services, robust video transmission over wireless environment poses many challenges. A new UEP_BTC_STBC_OFDM system is proposed to provide unequal error protection for the source coded video stream in dispersive fading channel. The scheme concatenates the Block Turbo Code (BTC) with the Space-Time Block Code (STBC) for an OFDM system. With the proposed system, both the good error correcting capability of BTC and the concurrent large diversity gain characteristic of STBC can be achieved simultaneously with low encoding and decoding complexity. Furthermore, by combining with the data partition of H. 264 and different BTC codes, this system can guarantee high QoS control of video transmission. Simulation result shows that the proposed system outoerforms other reported schemes and has good performance of video transmission.
文摘乙型肝炎病毒(hepatitis B virus,HBV)是一种常见的全球血液传播病原体,其导致的部分慢性乙肝患者可发展为肝硬化和肝癌,甚至导致死亡[1]。据统计,全世界约有640万名五岁以下儿童患有慢性HBV感染,中国是世界上HBV感染负担最大的国家,2019年中国约2.96亿人感染HBV,每年150万新增感染,其中,围产期母婴传播是HBV传播的主要途径之一,新生儿乙肝感染的风险为95%[2]。目前,我国育龄期妇女HBsAg的阳性率为5%~6%,HBsAg阳性孕妇的新生儿是HBV感染的高危人群[3]。阻断母婴传播是预防HBV的源头,母婴阻断主要是通过一定的医疗技术手段,阻止母体HBV传播给婴幼儿的方式。研究表明,母婴阻断对于新生儿乙肝预防和人类生命健康具有重要意义[4]。本文对围产期HBV母婴传播阻断进行综述。