期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Cause analysis and solutions of water blocking damage in cracked/non-cracked tight sandstone gas reservoirs 被引量:1
1
作者 Jie Wang Fu-Jian Zhou 《Petroleum Science》 SCIE CAS CSCD 2021年第1期219-233,共15页
After hydraulic fracturing treatment,a reduction in permeability caused by the invasion of fracturing fluids is an inevitable problem,which is called water blocking damage.Therefore,it is important to mitigate and eli... After hydraulic fracturing treatment,a reduction in permeability caused by the invasion of fracturing fluids is an inevitable problem,which is called water blocking damage.Therefore,it is important to mitigate and eliminate water blocking damage to improve the flow capacities of formation fluids and flowback rates of the fracturing fluid.However,the steady-state core flow method cannot quickly and accurately evaluate the effects of chemical agents in enhancing the fluid flow capacities in tight reservoirs.This paper introduces a time-saving and accurate method,pressure transmission test(PTT),which can quickly and quantitatively evaluate the liquid flow capacities and gas-drive flowback rates of a new nanoemulsion.Furthermore,scanning electron microscopy(SEM)was used to analyze the damage mechanism of different fluids and the adsorption of chemical agents on the rock surface.Parallel core flow experiments were used to evaluate the effects of the nanoemulsion on enhancing flowback rates in heterogeneous tight reservoirs.Experimental results show that the water blocking damage mechanisms differ in matrices and fractures.The main channels for gas channeling are fractures in cracked cores and pores in non-cracked cores.Cracked cores suffer less damage from water blocking than non-cracked cores,but have a lower potential to reduce water saturation.The PTT and SEM results show that the permeability reduction in tight sandstones caused by invasion of external fluids can be list as guar gum fracturing fluid>slickwater>brine.Parallel core flow experiments show that for low-permeability heterogenous s andstone reservoirs with a certain permeability ratio,the nanoemulsion can not only reduce reverse gas channeling degree,but also increase the flowback rate of the fracturing fluid.The nanoemulsion system provides a new solution to mitigate and eliminate water blocking damage caused by fracturing fluids in tight sandstone gas reservoirs. 展开更多
关键词 Hydraulic fracturing water blocking damage NANOEMULSION Pressure transmission test Liquid flow capacity Flowback rate
下载PDF
Pore network modeling of water block in low permeability reservoirs 被引量:11
2
作者 Shao Changjin Yang Zhenqing Zhou Guanggang Lu Guiwu 《Petroleum Science》 SCIE CAS CSCD 2010年第3期362-366,共5页
A pore network model was used in this paper to investigate the factors, in particular, throat radius, wettability and initial water saturation, causing water block in low permeability reservoirs. A new term - 'relati... A pore network model was used in this paper to investigate the factors, in particular, throat radius, wettability and initial water saturation, causing water block in low permeability reservoirs. A new term - 'relative permeability number' (RPN) was firstly defined, and then used to describe the degree of water block. Imbibition process simulations show that the RPN drops in accordance with the extension of the averaged pore throat radius from 0.05 to 1.5 μm, and yet once beyond that point of 1.5 μm, the RPN reaches a higher value, indicating the existence of a critical pore throat radius where water block is the maximum. When the wettability of the samples changes from water-wet to weakly water-wet, weakly gas-wet, or gas(oil)-wet, the gas RPN increases consistently, but this consistency is disturbed by the RPN dropping for weakly water-wet samples for water saturations less than 0.4, which means weakly waterwet media are more easily water blocked than water-wet systems. In the situation where the initial water saturation exceeds 0.05, water block escalates along with an increase in initial water saturation. 展开更多
关键词 Pore-network model water block relative permeability number low permeability wettability
下载PDF
Mechanisms of shale hydration and water block removal 被引量:2
3
作者 ZENG Fanhui ZHANG Qiang +3 位作者 GUO Jianchun ZENG Bo ZHANG Yu HE Songgen 《Petroleum Exploration and Development》 CSCD 2021年第3期752-761,共10页
Shale samples of Silurian Longmaxi Formation in the Changning area of the Sichuan Basin, SW China, were selected to carry out scanning electron microscopy, CT imaging, high-pressure mercury injection, low-temperature ... Shale samples of Silurian Longmaxi Formation in the Changning area of the Sichuan Basin, SW China, were selected to carry out scanning electron microscopy, CT imaging, high-pressure mercury injection, low-temperature nitrogen adsorption and imbibition experiments to compare the hydration characteristics of montmorillonite and illite, analyze the main factors affecting the water block removal of shale, and reveal the mechanisms of pore structure evolution during shale hydration. The hydration characteristics of shale are closely related to the composition of clay minerals, the shale with high illite content is not susceptible to hydration and thus has limited room for pore structure improvement;the shale with high montmorillonite is susceptible to hydration expansion and thus has higher potential of pore structure improvement by stimulation;the shale with high illite content has stronger imbibition in the initial stage, but insufficient diffusion ability, and thus is likely to have water block;the shale with high montmorillonite content has weaker imbibition in the initial stage but better water diffusion, so water blocking in this kind of shale can be removed to some degree;the shale reservoir has an optimal hydration time, when it is best in physical properties, but hydration time too long would cause damage to the reservoir, and the shale with high illite content has a shorter optimal hydration time;inorganic cations can inhibit the hydration of clay minerals and have stronger inhibition to illite expansion, especially K^(+);for the reservoir with high content of montmorillonite, the cation content of fracturing fluid can be lowered to promote the shale hydration;fracturing fluid with high K^(+) content can be injected into reservoirs with high illite content to suppress hydration. 展开更多
关键词 SHALE clay minerals HYDRATION microscopic pore structure water block effect fracturing fluid diffusion optimal hydration time water block removal
下载PDF
An experimental and numerical study of chemically enhanced water alternating gas injection 被引量:2
4
作者 Saeed Majidaie Mustafa Onur Isa M.Tan 《Petroleum Science》 SCIE CAS CSCD 2015年第3期470-482,共13页
In this work, an experimental study combined with numerical simulation was conducted to investigate the potential of chemically enhanced water alternating gas (CWAG) injection as a new enhanced oil recovery method. ... In this work, an experimental study combined with numerical simulation was conducted to investigate the potential of chemically enhanced water alternating gas (CWAG) injection as a new enhanced oil recovery method. The unique feature of this new method is that it uses alkaline, surfactant, and polymer additives as a chemical slug which is injected during the water alternating gas (WAG) process to reduce the interfacial tension (IFT) and simultaneously improve the mobility ratio. In essence, the proposed CWAG process involves a combination of chemical flooding and immiscible carbon dioxide (CO2) injection and helps in IFT reduction, water blocking reduction, mobility control, oil swelling, and oil viscosity reduction due to CO2 dissolution. Its performance was compared with the conventional immiscible water alter- nating gas (I-WAG) flooding. Oil recovery utilizing CWAG was better by 26 % of the remaining oil in place after waterflooding compared to the recovery using WAG conducted under similar conditions. The coreflood data (cumulative oil and water production) were history mat- ched via a commercial simulator by adjusting the relative permeability curves and assigning the values of the rock and fluid properties such as porosity, permeability, and the experimentally determined IFT data. History matching ofthe coreflood model helped us optimize the experiments and was useful in determining the importance of the parameters influencing sweep efficiency in the CWAG process. The effectiveness of the CWAG process in pro- viding enhancement of displacement efficiency is evident in the oil recovery and pressure response observed in the coreflood. The results of sensitivity analysis on CWAG slug patterns show that the alkaline-surfactant-polymer injection is more beneficial after CO2 slug injection due to oil swelling and viscosity reduction. The CO2 slug size analysis shows that there is an optimum CO2 slug size, around 25 % pore volume which leads to a maximum oil recovery in the CWAG process. This study shows that the ultralow IFT system, i.e., IFT equaling 10 2 or 10 3 mN/ m, is a very important parameter in CWAG process since the water blocking effect can be minimized. 展开更多
关键词 Enhanced water alternating gas (CWAG) Enhanced oil recovery Interfacial tension Mobilitycontrol ~ water blocking
下载PDF
Characterization and prevention of formation damage for fractured carbonate reservoir formations with low permeability 被引量:2
5
作者 Shu Yong Yan Jienian 《Petroleum Science》 SCIE CAS CSCD 2008年第4期326-333,共8页
Stress sensitivity and water blocking in fractured carbonate reservoir formations with low permeability were determined as the main potential damage mechanisms during drilling and completion operations in the ancient ... Stress sensitivity and water blocking in fractured carbonate reservoir formations with low permeability were determined as the main potential damage mechanisms during drilling and completion operations in the ancient buried hill Ordovician reservoirs in the Tarim Basin. Geological structure, lithology, porosity, permeability and mineral components all affect the potential for formation damage. The experimental results showed that the permeability loss was 83.8%-98.6% caused by stress sensitivity, and was 27.9%-48.1% caused by water blocking. Based on the experimental results, several main conclusions concerning stress sensitivity can be drawn as follows: the lower the core permeability and the smaller the core fracture width, the higher the stress sensitivity. Also, stress sensitivity results in lag effect for both permeability recovery and fracture closure. Aimed at the mechanisms of formation damage, a modified low-damage mixed metal hydroxide (MMH) drilling fluid system was developed, which was mainly composed of low-fluorescence shale control agent, filtration control agent, lowfluorescence lubricant and surfactant. The results of experimental evaluation and field test showed that the newly-developed drilling fluid and engineering techniques provided could dramatically increase the return permeability (over 85%) of core samples. This drilling fluid had such advantages as good rheological and lubricating properties, high temperature stability, and low filtration rate (API filtration less than 5 ml after aging at 120 ℃ for 4 hours). Therefore, fractured carbonate formations with low permeability could be protected effectively when drilling with the newly-developed drilling fluid. Meanwhile, field test showed that both penetration rate and bore stability were improved and the soaking time of the drilling fluid with formation was sharply shortened, indicating that the modified MMH drilling fluid could meet the requirements of drilling engineering and geology. 展开更多
关键词 Fractured carbonate formations with low permeability stress sensitivity water blocking MMH drilling fluids formation damage control
下载PDF
A Creation Model from the Gell-Mann Standard Model to the Creation of Bio Cells: Based on the Assumption of Homogeneous 5D Space-Time Universe
6
作者 Kai Wai Wong Wan Ki Chow 《Journal of Modern Physics》 2020年第7期1058-1074,共17页
In this paper, we briefly go over the homogeneous 5D model field theory: from the 5D space-time inception, to its quantum field solutions given in terms of Higgs vacuum, filled with magnetic monopole bose fields of al... In this paper, we briefly go over the homogeneous 5D model field theory: from the 5D space-time inception, to its quantum field solutions given in terms of Higgs vacuum, filled with magnetic monopole bose fields of all energies. Then through the space dimension reduction projections, the Gell-Mann standard model was obtained as well as a quantum to Classical connection was made via introducing Bose distribution to the monopoles to obtain the Perelman entropy and Ricci Flow mappings. This provided us a picture to the creation of Astronomical objects, from galaxies to stars and planets. This method of splitting the monopole energy into ranges is extended to show that below the basic rest mass range of the electron and Quark, it still can be applied to explaining for the creation of the chemical elements periodic table. But perhaps the most interesting is in the lowest hundreds of Hz energy range, obtained from yet another 3 fold space symmetry breaking, into 2D × 1D, producing bio nitrogenous bases composed of 3 Carbon 12 in hexagon structures, due to preservation of the 1D monopole standing waves of this low frequencies. From that by imposing gauge changes the monopole states into DNA spectra. Since such spectra states retain the DLRO, it induces formation of charge carriers periodicity in a spherical bio cell.. It was then argued that due to cell’s surface proteins, the structure must contain partial filled VB, with “p” state hole density, and empty CB, separated from VB by a positive band gap. Such band structures resemble known HTC Cuprate ceramics. Since the HTC goes through a Superconductivity transition via the simultaneous bose exciton condensation, providing a Coulomb pressure, which reduces the band gap substantially, and induces the ODLRO transition of the hole density. The same obviously applies to the bio cells. Because of the near continuous exciton levels generated, a matching to the DNA spectra then can always occur by selective choices of proteins on the cell surface. Judging from a numerical study, we did years ago on YBCO, with doping. We found with a large enough VB hole density, the exciton induced superconducting gap can easily lead to <em>T</em><em>c</em> in the room temperature range. In fact by EMF excitation can increase the exciton pressure and trigger the ODLRO transition <em>T</em><em>c</em> upward. In fact, numerical results then suggest there do exist coherent EMF spectra from three key elements: Water, Carbon and Hydrogen, together with Oxygen, as studied over the years by numerous people, starting from Schr<span style="white-space:nowrap;">&ouml;</span>dinger to most recently Geesink. 展开更多
关键词 5D Fermat’s Theorem Space Dimension Reduction Projections Perelman Mappings The Higgs Vacuum: A B.E. Condensed Monopole Bosons Realization of Excitonic Induced Superconducting “p” Valence Band Orbitals in Bio Cells The Final Coherent Building Block EMF Spectra: water Carbon Hydrogen and Oxygen
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部