期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
On the Blood Pressure in the Cardiovascular System
1
作者 Xiaobing Lu Jianli Jiang Shaohua Wang 《Journal of Biosciences and Medicines》 2022年第4期26-36,共11页
Background: Hemodynamics is a practical and complicated theoretical problem. The aim of this paper is to analyze the characteristics of blood pressure in the cardiovascular system changing with the mechanical paramete... Background: Hemodynamics is a practical and complicated theoretical problem. The aim of this paper is to analyze the characteristics of blood pressure in the cardiovascular system changing with the mechanical parameters of blood vessels and the storage of some visceral organs. Method: The fluid network model was used for the study. The cardiovascular system was modeled as a system consisting of 20 segments of vessels. The main controlling parameters were determined first by using dimensional analysis. Then the responses of blood pressure of each segment of vessels were analyzed by changing the controlling parameters. Results: The parameters of the blood vessel of brain have the least influence on the pressures of other parts. The pressures of the system of blood vessels will decrease if some blood is stored in the liver or the abdominal vein system. Vice versa. The effects of regulation of blood on the variation of blood pressure are larger than the other controlling parameters. Conclusions: The controlling parameters of the abdominal aorta and ascending aorta affect greatly the blood pressure of each vessel. 展开更多
关键词 Cardiovascular System Response of blood Pressure regulation of blood flow Theory of Womersley
下载PDF
AB042.Pericytes on microvessels lead to vascular dysfunction during retinal ischemia
2
作者 Deborah Villafranca-Baughman Luis Alarcón-Martínez Adriana Di Polo 《Annals of Eye Science》 2018年第1期448-448,共1页
Background:Pericytes are contractile cells that wrap along the walls of capillaries.In the brain,pericytes play a crucial role in the regulation of capillary diameter and vascular blood flow in response to metabolic d... Background:Pericytes are contractile cells that wrap along the walls of capillaries.In the brain,pericytes play a crucial role in the regulation of capillary diameter and vascular blood flow in response to metabolic demand.During ischemia,it has been suggested that pericytes may constrict capillaries,and that pericytes remain constricted after reperfusion thus resulting in impaired blood flow.Methods:Here,we used a mouse model of retinal ischemia based on ligation of the central retinal artery to characterize the role of pericytes on capillary constriction.Ischemia was induced in transgenic mice carrying the NG2 promoter driving red fluorescent protein expression to selectively visualize pericytes(line NG2:DsRed).Changes in retinal capillary diameter at 1 hr after ischemia were measured ex vivo in whole-mounted retinas from ischemic and control eyes(n=4-6/group)using a stereological approach.Vessels and pericytes were three-dimensionally reconstructed using IMARIS(Bitplane).Furthermore,we used a novel and minimally invasive two-photon microscopy approach that allowed live imaging of microvasculature changes in the retina.Results:Our data show a generalized reduction in capillary diameter in ischemic retinas relative to sham-operated controls in all vascular plexus(ischemia:4.7±0.2μm,control:5.2±0.2µm,student’s t-test,P<0.001).Analysis of the number of capillary constrictions at pericyte locations,visualized in NG2:DsRed mice,demonstrated a substantial increase in ischemic retinas relative to the physiological capillary diameter reductions observed in controls(ischemia:1,038±277 constrictions at pericyte locations,control:60±36 constrictions at pericyte locations,student’s t-test,P<0.01).Live imaging using two-photon microscopy confirmed robust capillary constriction at the level of pericytes on retinal capillaries during ischemia(n=6-8/group).Conclusions:Collectively,our data demonstrate that ischemia promotes rapid pericyte constriction on retinal capillaries causing major microvascular dysfunction in this tissue.To identify the molecular mechanisms underlying the pathological response of pericytes during ischemia,we are currently carrying out experiments in mice and zebrafish to modulate signaling pathways involved in calcium dynamics leading to contractility in these cells. 展开更多
关键词 ISCHEMIA PERICYTE blood flow regulation in vivo two-photon microscopy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部