Ni-rich layered oxides are potential cathode materials for next-generation high energy density Li-ion batteries due to their high capacity and low cost.However,the inherently unstable surface properties,including high...Ni-rich layered oxides are potential cathode materials for next-generation high energy density Li-ion batteries due to their high capacity and low cost.However,the inherently unstable surface properties,including high levels of residual Li compounds,dissolution of transition metal cations,and parasitic side reactions,have not been effectively addressed,leading to significant degradation in their electrochemical performance.In this study,we propose a simple and effective lactic acid-assisted interface engineering strategy to regulate the surface chemistry and properties of Ni-rich LiNi_(0.8)Co_(0.1)Mr_(0.1)O_(2) cathode.This novel surface treatment method successfully eliminates surface residual Li compounds,inhibits structural collapse,and mitigates cathode-electrolyte interface film growth.As a result,the lactic acidtreated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) achieved a remarkable capacity retention of 91.7% after 100 cycles at 0.5 C(25℃) and outstanding rate capability of 149.5 mA h g^(-1) at 10 C,significantly outperforming the pristine material.Furthermore,a pouch-type full cell incorporating the modified LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode demonstrates impressive long-term cycle life,retaining 81.5% of its capacity after 500 cycles at 1 C.More importantly,the thermal stability of the modified cathode is also dramatically improved.This study offers a valuable surface modification strategy for enhancing the overall performance of Ni-rich cathode materials.展开更多
The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,an...The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.展开更多
The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts ...The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts for lactic acid oxidation reaction(LAOR)and understanding the reaction process are challenging.Here,we report the electrooxidation of waste PLA to acetate at a high current density of 100 mA cm-2 with high Faraday efficiency(~95%)and excellent stability(>100 h)over a nickel selenide nanosheet catalyst.In addition,a total Faraday efficiency of up to 190%was achieved for carboxylic acids,including acetic acid and formic acid,by coupling with the cathodic CO_(2) reduction reaction.In situ experimental results and theoretical simulations revealed that the catalytic activity center of LAOR was dynamically formed NiOOH species,and the surface-adsorbed SeO_(x) species accelerated the formation of Ni~(3+)species,thus promoting catalytic activity.The mechanism of lactic acid electrooxidation was further elucidated.Lactic acid was dehydrogenated to produce pyruvate first and then formed CH_3CO due to preferential C-C bond cleavage,resulting in the presence of acetate.This work demonstrated a sustainable method for recycling waste PLA and CO_(2) into high-value-added products.展开更多
Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lac...Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lactic acid bacteria(LAB)were used to ferment Brassica napus BP for alleviating its allergenicity.Four novel allergens(glutaredoxin,oleosin-B2,catalase and lipase)were identified with significant decreases in LAB-fermented BP(FBP)than natural BP by proteomics.Meanwhile,metabolomics analysis showed significant increases of 28 characteristic oligopeptides and amino acids in FBP versus BP,indicating the degradation of LAB on allergens.Moreover,FBP showed alleviatory effects in BALB/c mice,which relieved pathological symptoms and lowered production of allergic mediators.Microbial high-throughput sequencing analysis showed that FBP could regulate gut microbiota and metabolism to strengthen immunity,which were closely correlated with the alleviation of allergic reactivity.These findings could contribute to the development and utilization of hypoallergenic BP products.展开更多
Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but...Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but a food-grade starter culture with glucosinolates degradation capacity is required. In this study, 46 strains of lactic acid bacteria from traditional paocai brines were screened for their ability to glucosinolate degradation. The results showed that more than 50% of the strains significantly degraded glucosinolates. Two strains of Lactiplantibacillus(p7 and s7) with high capacity of glucosinolates degradation through producing enzymes were identified. Then,an optimized condition for rapeseed meal fermentation by p7 was established to degrade glucosinolates, which can achieve about 80% degradation. UPLC/Q-TOF-MS analysis showed that the degradation rate of individual glucosinolates was different and the degradation rate of gluconapin and progoitrin in rapeseed meal can reach more than 90%. Meanwhile, fermentation with p7 can improve safety of rapeseed meal by inhibiting the growth of Enterobacteriaceae and improve its nutritional properties by degrading phytic acid. The in vitro digestion experiments showed that the content of glucosinolates in rapeseed meal decreased significantly during gastric digestion. Meanwhile, fermentation with p7 can greatly improve the release of soluble protein and increase the contents of free essential amino acids, such as lysine(increased by 12 folds) and methionine(increased by 10 folds).展开更多
The rapid identification of lactic acid bacteria,which are essential microorganisms in the food industry,is of great significance for industrial applications.The identification of lactic acid bacteria traditionally re...The rapid identification of lactic acid bacteria,which are essential microorganisms in the food industry,is of great significance for industrial applications.The identification of lactic acid bacteria traditionally relies on the isolation and identification of pure colonies.While this method is well-established and widely used,it is not without limitations.The subjective judgment inherent in the isolation and purification process introduces potential for error,and the incomplete nature of the isolation process can result in the loss of valuable information.The advent of next generation sequencing has provided a novel approach to the rapid identification of lactic acid bacteria.This technology offers several advantages,including rapidity,accuracy,high throughput,and low cost.Next generation sequencing represents a significant advancement in the field of DNA sequencing.Its ability to rapidly and accurately identify lactic acid bacteria strains in samples with insufficient information or in the presence of multiple lactic acid bacteria sets it apart as a valuable tool.The application of this technology not only circumvents the potential errors inherent in the traditional method but also provides a robust foundation for the expeditious identification of lactic acid bacteria strains and the authentication of bacterial powder in industrial applications.This paper commences with an overview of traditional and molecular biology methods for the identification of lactic acid bacteria.While each method has its own advantages,they are not without limitations in practical application.Subsequently,the paper provides an introduction of the principle,process,advantages,and disadvantages of next generation sequencing,and also details its application in strain identification and rapid identification of lactic acid bacteria.The objective of this study is to provide a comprehensive and reliable basis for the rapid identification of industrial lactic acid bacteria strains and the authenticity identification of bacterial powder.展开更多
The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA v...The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.展开更多
Objective:To investigate and analyze the annual physical examination results of retired employees from a unit in the civil aviation system,focusing on blood lipids,blood glucose,blood uric acid,and blood routine resul...Objective:To investigate and analyze the annual physical examination results of retired employees from a unit in the civil aviation system,focusing on blood lipids,blood glucose,blood uric acid,and blood routine results.The study aims to provide relevant references for formulating reasonable disease management measures for preventing and controlling hyperlipidemia,hyperuricemia,and other conditions in retired employees.Methods:The examination results of 231 participants were collected and analyzed.The participants were divided into four groups based on age:middle-aged group,young-old group,middle-old group,and old-old group.The blood test results were compared across these groups,and an assessment of atherosclerotic cardiovascular disease(ASCVD)risk levels was completed in conjunction with medical history.Blood test results were also compared by gender.Results:There were no significant statistical differences in blood test results when grouped by age.However,the prevalence of hyperuricemia was higher in males than in females,while the prevalence of hypercholesterolemia was higher in females than in males.The LDL-C target achievement rate was lower in the moderate-and-high-risk group as well as the very high-risk group as defined by ASCVD risk levels.Conclusion:Management of hyperuricemia and hyperlipidemia in retired employees(elderly patients)should be strengthened to reduce the risk of ASCVD events and alleviate the potential medical burden associated with disease progression.展开更多
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited.The principal pathological alterations of the disease include the selective d...Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited.The principal pathological alterations of the disease include the selective degeneration of motor neurons in the brain,brainstem,and spinal cord,as well as abnormal protein deposition in the cytoplasm of neurons and glial cells.The biological markers under extensive scrutiny are predominantly located in the cerebrospinal fluid,blood,and even urine.Among these biomarke rs,neurofilament proteins and glial fibrillary acidic protein most accurately reflect the pathologic changes in the central nervous system,while creatinine and creatine kinase mainly indicate pathological alterations in the peripheral nerves and muscles.Neurofilament light chain levels serve as an indicator of neuronal axonal injury that remain stable throughout disease progression and are a promising diagnostic and prognostic biomarker with high specificity and sensitivity.However,there are challenges in using neurofilament light chain to diffe rentiate amyotrophic lateral sclerosis from other central nervous system diseases with axonal injury.Glial fibrillary acidic protein predominantly reflects the degree of neuronal demyelination and is linked to non-motor symptoms of amyotrophic lateral sclerosis such as cognitive impairment,oxygen saturation,and the glomerular filtration rate.TAR DNA-binding protein 43,a pathological protein associated with amyotrophic lateral sclerosis,is emerging as a promising biomarker,particularly with advancements in exosome-related research.Evidence is currently lacking for the value of creatinine and creatine kinase as diagnostic markers;however,they show potential in predicting disease prognosis.Despite the vigorous progress made in the identification of amyotrophic lateral sclerosis biomarkers in recent years,the quest for definitive diagnostic and prognostic biomarke rs remains a formidable challenge.This review summarizes the latest research achievements concerning blood biomarkers in amyotrophic lateral sclerosis that can provide a more direct basis for the differential diagnosis and prognostic assessment of the disease beyond a reliance on clinical manifestations and electromyography findings.展开更多
Pt/activated carbon (Pt/AC) catalyst combined with base works efficiently for lactic acid production from glycerol under mild conditions. Base type (LiOH, NaOH, KOH, or Ba(OH)2) and base/glycerol molar ratio sig...Pt/activated carbon (Pt/AC) catalyst combined with base works efficiently for lactic acid production from glycerol under mild conditions. Base type (LiOH, NaOH, KOH, or Ba(OH)2) and base/glycerol molar ratio significantly affected the catalytic performance. The corresponding lactic acid selectivity was in the order of LiOH〉NaOH〉KOH〉Ba(OH)2. An increase in LiOH/glycerol molar ratio ele‐vated the glycerol conversion and lactic acid selectivity to some degree, but excess LiOH inhibited the transformation of glycerol to lactic acid. In the presence of Pt/AC catalyst, the maximum selec‐tivity of lactic acid was 69.3% at a glycerol conversion of 100% after 6 h at 90 °C, with a Li‐OH/glycerol molar ratio of 1.5. The Pt/AC catalyst was recycled five times and was found to exhibit slightly decreased glycerol conversion and stable lactic acid selectivity. In addition, the experimental results indicated that reaction intermediate dihydroxyacetone was more favorable as the starting reagent for lactic acid formation than glyceraldehyde. However, the Pt/AC catalyst had adverse effects on the intermediate transformation to lactic acid, because it favored the catalytic oxidation of them to glyceric acid.展开更多
[Objective] The aim was to conduct preliminary investigation and diversity analysis of lactic acid bacteria resources in forage from Turpan of Xinjiang. [Method] The lactic acid bacteria in the three kinds of forage i...[Objective] The aim was to conduct preliminary investigation and diversity analysis of lactic acid bacteria resources in forage from Turpan of Xinjiang. [Method] The lactic acid bacteria in the three kinds of forage ingredients in Xinjiang were isolated by using plate separation method and screened by MRS+CaCO3 solid medium. Morphological, physiological and biochemical identification and 16S rDNA gene sequence analysis were carried out to the isolated eighty strains of lactic acid bacteria, to explore its taxonomic status. [Result] Twenty strains of lactic acid bacteria were obtained from alfalfa, forty-one from wheat, and nineteen from corn. The physiological and biochemical identification and 16S rDNA gene sequence analysis results showed that the eighty strains of lactic acid bacteria belonged to two genera, namely, Lactobacillus, Enterococcus; 7 species, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus paracasei, Entercoccus faecium, Entercoccus durans, Lactobacillus plantarum, Entercoccus hirae. Lactobacillus casei and Entercoccus faecium were ubiquitous in the three kinds of forage ingredients. Besides these two lactic acid bacteria, there were Lactobacillus rhamnosus, Lactobacillus paracasei, Lactobacillus plantarum in wheat, Lactobacillus plantarum, Lactobacillus paracasei, Entercoccus hirae, Entercoccus durans in alfalfa, Lactobacillus plantarum, Entercoccus durans in corn. [Conclusion] There is a big diversity of lactic acid bacteria in different forage from Turpan of Xinjiang, in which Lactobacillus casei, Entercoccus faecium are the key bacteria for forage fermentation.展开更多
Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA)....Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA). The effects of cationic species on the structures and surface acid-base distributions of the ZSM-5 zeolites were investigated. The important factors that affect the catalytic performance were also identified. The modified ZSM-5 catalysts were characterized using X-ray diffraction, tempera- ture-programmed desorptions of NH3 and CO2, pyridine adsorption spectroscopy, and N2 adsorption to determine the crystal phase structures, surface acidities and basicities, nature of acid sites, specific surface areas, and pore volumes. The results show that the acid-base sites that are adjusted by alkali-metal species, particularly weak acid-base sites, are mainly responsible for the formation of AA. The KZSM-5 catalyst, in particular, significantly improved LA conversion and AA selectivity because of the synergistic effect of weak acid-base sites. The reaction was conducted at different reaction temperatures and liquid hourly space velocities (LHSVs) to understand the catalyst selectivity for AA and trends in byproduct formation. Approximately 98% LA conversion and 77% AA selectivity were achieved using the KZSM-5 catalyst under the optimum conditions (40 wt% LA aqueous solution, 365 ℃, and LHSV 2 h-1).展开更多
Lactic acid is produced as a major byproduct during sorbitol hydrogenolysis under alkaline conditions.We investigated the effects of two different alkaline additives,Ca(OH)2 and La(OH)3,on lactic acid formation du...Lactic acid is produced as a major byproduct during sorbitol hydrogenolysis under alkaline conditions.We investigated the effects of two different alkaline additives,Ca(OH)2 and La(OH)3,on lactic acid formation during sorbitol hydrogenolysis over Ni/C catalyst.In the case of Ca(OH)2,the selectivity of lactic acid was 8.9%.In contrast,the inclusion of La(OH)3 resulted in a sorbitol conversion of 99% with only trace quantities of lactic acid being detected.In addition,the total selectivity towards the C2 and C4 products increased from 20.0% to 24.5% going from Ca(OH)2 to La(OH)3.These results therefore indicated that La(OH)3 could be used as an efficient alkaline additive to enhance the conversion of sorbitol.Pyruvic aldehyde,which is formed as an intermediate during sorbitol hydrogenolysis,can be converted to both 1,2-propylene glycol and lactic acid by hydrogenation and rearrangement reactions,respectively.Notably,these two reactions are competitive.When Ca(OH)2 was used as an additive for sorbitol hydrogenolysis,both the hydrogenation and rearrangement reactions occurred.In contrast,the use of La(OH)3 favored the hydrogenation reaction,with only trace quantities of lactic acid being formed.展开更多
This study assessed the effects of lactic acid bacteria(LAB), cellulase, cellulase-producing Bacillus pumilus and their combinations on the fermentation characteristics, chemical composition, bacterial community and i...This study assessed the effects of lactic acid bacteria(LAB), cellulase, cellulase-producing Bacillus pumilus and their combinations on the fermentation characteristics, chemical composition, bacterial community and in vitro digestibility of alfalfa silage. A completely randomized design involving a 8(silage additives)×3 or 2(silage days) factorial arrangement of treatments was adopted in the present study. The 8 silage additive treatments were: untreated alfalfa(control); two commercial additives(GFJ and Chikuso-1); an originally selected LAB(Lactobacillus plantarum a214) isolated from alfalfa silage; a cellulase-producing Bacillus(CB) isolated from fresh alfalfa; cellulase(C); and the combined additives(a214+C and a214+CB). Silage fermentation characteristics, chemical composition and microorganism populations were analysed after 30, 60 and 65 days(60 days followed by exposure to air for five additional days). In vitro digestibility was analysed for 30 and 60 days. Compared with the other treatments, selected LAB a214, a214 combined with either C or CB, and Chikuso-1 had the decreased(P<0.001) pH and increased(P<0.001) lactic acid concentrations during the ensiling process, and there were no differences(P>0.05) among them. Fiber degradation was not significant(P≥0.054) in any C or CB treatments. The a214 treatment showed the highest(P=0.009) in vitro digestibility of dry matter(595.0 g kg–1DM) after ensiling and the highest abundance of Lactobacillus(69.42 and 79.81%, respectively) on days 60 and 65, compared to all of other treatments. Overall, the silage quality of alfalfa was improved with the addition of a214, which indicates its potential as an alfalfa silage inoculant.展开更多
Objective:To evaluate the ability of lactic acid bacteria(LAB)strains isolated from fermented mustard to lower the cholesterol in vitro.Methods:The ability of 50 LAB strains isolated from fermented mustard on lowering...Objective:To evaluate the ability of lactic acid bacteria(LAB)strains isolated from fermented mustard to lower the cholesterol in vitro.Methods:The ability of 50 LAB strains isolated from fermented mustard on lowering cholesterol in vitro was determined by modified o-phtshalaldehyde method.The LAB isolates were analyzed for their resistance to acid and bile salt.Strains with lowering cholesterol activity,were determined adherence to Caco-2 cells.Results:Strain B0007,B0006 and B0022 assimilated more cholesterol than BCRC10474 and BCRC17010.The isolated strains showed tolerance to pH 3.0 for 3h despite variations in the degree of viability and bile-tolerant strains,with more than 10~s CFU/mL after incubation for 24 h at 1%oxigall in MRS.In addition,strain B0007 and B0022 identified as Lactobacillus plantarum with 16S rDNA sequences were able to adhere to the Caco-2 cell lines.Conclusions:These strains B0007 and B0022 may be potential functional sources for cholesterollowering activities as well as adhering to Caco-2 cell lines.展开更多
This study was conducted to evaluate the effect of lactic acid bacteria and propionic acid on the fermentation quality, aer- obic stability and in vitro gas production kinetics and digestibility of whole-crop corn bas...This study was conducted to evaluate the effect of lactic acid bacteria and propionic acid on the fermentation quality, aer- obic stability and in vitro gas production kinetics and digestibility of whole-crop corn based totalmixed ration (TMR) silage. Total mixed ration was ensiled with four treatments: (1) no additives (control); (2) an inoculant (Lactobacillus plantarum) (L); (3) propionicacid (P); (4) propionic acid+lactic acid bacteria (PL). All treatments were ensiled in laboratory-scale silos for 45 days, and then subjected to an aerobic stability test for12 days. Further, four TMR silages were incubated in vitro with buffered rumen fluid to study in vitro gas production kinetics and digestibility. The results indicated that all TMR silages had good fermentation characteristics with low pH (〈3.80) and ammonia nitrogen (NH3-N) contents, and high lactic acid contents as well as Flieg points. Addition of L further improved TMR silage quality with more lactic acid production. Addition of P and PL decreased lactic acid and NH3-N contents of TMR silage compared to the control (P〈0.05). After 12 days aerobic exposure, P and PL silages remained stable, but L and the control silages deteriorated as indicated by a reduction in lactic acid and an increase in pH, and numbers of yeast. Compared to the control, addition of L had no effects on TMR silage in terms of 72 h cumulative gas production, in vitro dry matter digestibility, metabolizable energy, net energy for lactation and short chain fatty acids, whereas addition of PL significantly (P〈0.05) increased them. L silage had higher (P〈0.05) in vitro neutral detergent fiber digestibility than the control silage. The results of our study suggested that TMR silage prepared with whole-crop corn can be well preserved with or without additives. Furthermore, the findings of this study suggested that propionic acid is compatible with lactic acid bacteria inoculants, and when used together, although they reduced lactic acid production of TMR silage, they improved aerobic stability and in vitro nutrients digestibility of TMR silage.展开更多
Objective:To determine lactic acid bacteria's capability to enhance the process of binding and isolating aflatoxin B1 and to utilize such lactic acid bacteria as a food supplement or probiotic products for prevent...Objective:To determine lactic acid bacteria's capability to enhance the process of binding and isolating aflatoxin B1 and to utilize such lactic acid bacteria as a food supplement or probiotic products for preventing absorption of aflatoxin Bl in human and animal bodies.Methods:In the present research,the bacteria were isolated from five different sources.For surveying the capability of the bacteria in isolating aflatoxin Bl,ELISA method was implemented,and for identifying the resultant strains through 16S rRNA sequencing method,universal primers were applied.Results:Among the strains which were isolated,two strains of Lactobacillus pentosus and Lactobacillus beveris exhibited the capability of absorbing and isolating aflatoxin Bl by respectively absorbing and discharging 17.4%and 34.7%of the aforementioned toxin existing in the experiment solution.Conclusions:Strains of Lactobacillus pentosus and Lactobacillus beveris were isolated from human feces and local milk samples,respectively.And both strains has the ability to isolate or bind with aflatoxin Bl.展开更多
To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic ...To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSS-d) when the COD loading were designated as 18.8 g/(L-d) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.展开更多
To improve the nutritional value and the palatability of air-dried rice straw, culture broth of the lactic acid bacteria community SFC-2 was used to examine the effects of two different treatments, fermentation and ad...To improve the nutritional value and the palatability of air-dried rice straw, culture broth of the lactic acid bacteria community SFC-2 was used to examine the effects of two different treatments, fermentation and adsorption. Air-dried and chopped rice straw was treated with either fermentation for 30 d after adding 1.5 L nutrient solution(50 m L inocula L–1, 1.2×1012 CFU m L–1 inocula) kg–1 straw dry matter, or spraying a large amount of culture broth(1.5 L kg–1 straw dry matter, 1.5×1011 CFU m L–1 culture broth) on the straw and allowing it to adsorb for 30 min. The feed quality and aerobic stability of the resulting forage were examined. Both treatments improved the feed quality of rice straw, and adsorption was better than fermentation for preserving nutrients and improving digestibility, as evidenced by higher dry matter(DM) and crude protein(CP) concentrations, lower neutral detergent fiber(NDF), acid detergent fiber(ADF) and NH3-N concentrations, as well as higher lactic acid production and in vitro digestibility of DM(IVDMD). The aerobic stability of the adsorbed straw and the fermented straw was 392 and 480 h, respectively. After being exposed to air, chemical components and microbial community of the fermented straw were more stable than the adsorbed straw.展开更多
Species of lactic acid bacteria (LAB) represent as potential microorganisms and have been widely applied in food fermentation worldwide. Milk fermentation process has been relied on the activity of LAB, where transfor...Species of lactic acid bacteria (LAB) represent as potential microorganisms and have been widely applied in food fermentation worldwide. Milk fermentation process has been relied on the activity of LAB, where transformation of milk to good quality of fermented milk products made possible. The presence of LAB in milk fermentation can be either as spontaneous or inoculated starter cultures. Both of them are promising cultures to be explored in fermented milk manufacture. LAB have a role in milk fermentation to produce acid which is important as preservative agents and generating flavour of the products. They also produce exopolysaccharides which are essential as texture formation. Considering the existing reports on several health-promoting properties as well as their generally recognized as safe (GRAS) status of LAB, they can be widely used in the developing of new fermented milk products.展开更多
基金This work was supported by the Anhui Provincial Natural Science Foundation(Grant No.2308085QB69)the Institute of Energy,Hefei Comprehensive National Science Center(Grant No.21KZS210).
文摘Ni-rich layered oxides are potential cathode materials for next-generation high energy density Li-ion batteries due to their high capacity and low cost.However,the inherently unstable surface properties,including high levels of residual Li compounds,dissolution of transition metal cations,and parasitic side reactions,have not been effectively addressed,leading to significant degradation in their electrochemical performance.In this study,we propose a simple and effective lactic acid-assisted interface engineering strategy to regulate the surface chemistry and properties of Ni-rich LiNi_(0.8)Co_(0.1)Mr_(0.1)O_(2) cathode.This novel surface treatment method successfully eliminates surface residual Li compounds,inhibits structural collapse,and mitigates cathode-electrolyte interface film growth.As a result,the lactic acidtreated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) achieved a remarkable capacity retention of 91.7% after 100 cycles at 0.5 C(25℃) and outstanding rate capability of 149.5 mA h g^(-1) at 10 C,significantly outperforming the pristine material.Furthermore,a pouch-type full cell incorporating the modified LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode demonstrates impressive long-term cycle life,retaining 81.5% of its capacity after 500 cycles at 1 C.More importantly,the thermal stability of the modified cathode is also dramatically improved.This study offers a valuable surface modification strategy for enhancing the overall performance of Ni-rich cathode materials.
基金supported by the National Key Research and Development Program of China(2021YFD2100902-3)the National Natural Science Foundation of China(32072258)+5 种基金Major Science and Technology Program of Heilongjiang(2020ZX08B02)Harbin University of Commerce“Young Innovative Talents”Support Program(2019CX062020CX262020CX27)the Central Financial Support for the Development of Local Colleges and Universities,Graduate Innovation Research Project of Harbin University of Commerce(YJSCX2021-698HSD)Training plan of Young Innovative Talents in Universities of Heilongjiang(UNPYSCT-2020218).
文摘The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.
基金financially supported by the National Key R&D Program of China (2021YFA1501700)the National Science Foundation of China (22272114)+4 种基金the Fundamental Research Funds from Sichuan University (2022SCUNL103)the Funding for Hundred Talent Program of Sichuan University (20822041E4079)the NSFC (22102018 and 52171201)the Huzhou Science and Technology Bureau (2022GZ45)the Hefei National Research Center for Physical Sciences at the Microscale (KF2021005)。
文摘The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts for lactic acid oxidation reaction(LAOR)and understanding the reaction process are challenging.Here,we report the electrooxidation of waste PLA to acetate at a high current density of 100 mA cm-2 with high Faraday efficiency(~95%)and excellent stability(>100 h)over a nickel selenide nanosheet catalyst.In addition,a total Faraday efficiency of up to 190%was achieved for carboxylic acids,including acetic acid and formic acid,by coupling with the cathodic CO_(2) reduction reaction.In situ experimental results and theoretical simulations revealed that the catalytic activity center of LAOR was dynamically formed NiOOH species,and the surface-adsorbed SeO_(x) species accelerated the formation of Ni~(3+)species,thus promoting catalytic activity.The mechanism of lactic acid electrooxidation was further elucidated.Lactic acid was dehydrogenated to produce pyruvate first and then formed CH_3CO due to preferential C-C bond cleavage,resulting in the presence of acetate.This work demonstrated a sustainable method for recycling waste PLA and CO_(2) into high-value-added products.
基金supported by the National Natural Science Foundation of China(32102605)the Agricultural Science and Technology Innovation Program under Grant(CAAS-ASTIP-2020-IAR)。
文摘Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lactic acid bacteria(LAB)were used to ferment Brassica napus BP for alleviating its allergenicity.Four novel allergens(glutaredoxin,oleosin-B2,catalase and lipase)were identified with significant decreases in LAB-fermented BP(FBP)than natural BP by proteomics.Meanwhile,metabolomics analysis showed significant increases of 28 characteristic oligopeptides and amino acids in FBP versus BP,indicating the degradation of LAB on allergens.Moreover,FBP showed alleviatory effects in BALB/c mice,which relieved pathological symptoms and lowered production of allergic mediators.Microbial high-throughput sequencing analysis showed that FBP could regulate gut microbiota and metabolism to strengthen immunity,which were closely correlated with the alleviation of allergic reactivity.These findings could contribute to the development and utilization of hypoallergenic BP products.
基金provided by the Jiangsu Provincial Key Research and Development Program (Grant No. BE2022362)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but a food-grade starter culture with glucosinolates degradation capacity is required. In this study, 46 strains of lactic acid bacteria from traditional paocai brines were screened for their ability to glucosinolate degradation. The results showed that more than 50% of the strains significantly degraded glucosinolates. Two strains of Lactiplantibacillus(p7 and s7) with high capacity of glucosinolates degradation through producing enzymes were identified. Then,an optimized condition for rapeseed meal fermentation by p7 was established to degrade glucosinolates, which can achieve about 80% degradation. UPLC/Q-TOF-MS analysis showed that the degradation rate of individual glucosinolates was different and the degradation rate of gluconapin and progoitrin in rapeseed meal can reach more than 90%. Meanwhile, fermentation with p7 can improve safety of rapeseed meal by inhibiting the growth of Enterobacteriaceae and improve its nutritional properties by degrading phytic acid. The in vitro digestion experiments showed that the content of glucosinolates in rapeseed meal decreased significantly during gastric digestion. Meanwhile, fermentation with p7 can greatly improve the release of soluble protein and increase the contents of free essential amino acids, such as lysine(increased by 12 folds) and methionine(increased by 10 folds).
基金Supported by Special Project of"Grassland Talents"in Inner Mongolia.
文摘The rapid identification of lactic acid bacteria,which are essential microorganisms in the food industry,is of great significance for industrial applications.The identification of lactic acid bacteria traditionally relies on the isolation and identification of pure colonies.While this method is well-established and widely used,it is not without limitations.The subjective judgment inherent in the isolation and purification process introduces potential for error,and the incomplete nature of the isolation process can result in the loss of valuable information.The advent of next generation sequencing has provided a novel approach to the rapid identification of lactic acid bacteria.This technology offers several advantages,including rapidity,accuracy,high throughput,and low cost.Next generation sequencing represents a significant advancement in the field of DNA sequencing.Its ability to rapidly and accurately identify lactic acid bacteria strains in samples with insufficient information or in the presence of multiple lactic acid bacteria sets it apart as a valuable tool.The application of this technology not only circumvents the potential errors inherent in the traditional method but also provides a robust foundation for the expeditious identification of lactic acid bacteria strains and the authentication of bacterial powder in industrial applications.This paper commences with an overview of traditional and molecular biology methods for the identification of lactic acid bacteria.While each method has its own advantages,they are not without limitations in practical application.Subsequently,the paper provides an introduction of the principle,process,advantages,and disadvantages of next generation sequencing,and also details its application in strain identification and rapid identification of lactic acid bacteria.The objective of this study is to provide a comprehensive and reliable basis for the rapid identification of industrial lactic acid bacteria strains and the authenticity identification of bacterial powder.
基金Prince of Songkla University(PSU),Hat Yai,Songkhla,Thailand(Grant Number AGR581246S).
文摘The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.
文摘Objective:To investigate and analyze the annual physical examination results of retired employees from a unit in the civil aviation system,focusing on blood lipids,blood glucose,blood uric acid,and blood routine results.The study aims to provide relevant references for formulating reasonable disease management measures for preventing and controlling hyperlipidemia,hyperuricemia,and other conditions in retired employees.Methods:The examination results of 231 participants were collected and analyzed.The participants were divided into four groups based on age:middle-aged group,young-old group,middle-old group,and old-old group.The blood test results were compared across these groups,and an assessment of atherosclerotic cardiovascular disease(ASCVD)risk levels was completed in conjunction with medical history.Blood test results were also compared by gender.Results:There were no significant statistical differences in blood test results when grouped by age.However,the prevalence of hyperuricemia was higher in males than in females,while the prevalence of hypercholesterolemia was higher in females than in males.The LDL-C target achievement rate was lower in the moderate-and-high-risk group as well as the very high-risk group as defined by ASCVD risk levels.Conclusion:Management of hyperuricemia and hyperlipidemia in retired employees(elderly patients)should be strengthened to reduce the risk of ASCVD events and alleviate the potential medical burden associated with disease progression.
文摘Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited.The principal pathological alterations of the disease include the selective degeneration of motor neurons in the brain,brainstem,and spinal cord,as well as abnormal protein deposition in the cytoplasm of neurons and glial cells.The biological markers under extensive scrutiny are predominantly located in the cerebrospinal fluid,blood,and even urine.Among these biomarke rs,neurofilament proteins and glial fibrillary acidic protein most accurately reflect the pathologic changes in the central nervous system,while creatinine and creatine kinase mainly indicate pathological alterations in the peripheral nerves and muscles.Neurofilament light chain levels serve as an indicator of neuronal axonal injury that remain stable throughout disease progression and are a promising diagnostic and prognostic biomarker with high specificity and sensitivity.However,there are challenges in using neurofilament light chain to diffe rentiate amyotrophic lateral sclerosis from other central nervous system diseases with axonal injury.Glial fibrillary acidic protein predominantly reflects the degree of neuronal demyelination and is linked to non-motor symptoms of amyotrophic lateral sclerosis such as cognitive impairment,oxygen saturation,and the glomerular filtration rate.TAR DNA-binding protein 43,a pathological protein associated with amyotrophic lateral sclerosis,is emerging as a promising biomarker,particularly with advancements in exosome-related research.Evidence is currently lacking for the value of creatinine and creatine kinase as diagnostic markers;however,they show potential in predicting disease prognosis.Despite the vigorous progress made in the identification of amyotrophic lateral sclerosis biomarkers in recent years,the quest for definitive diagnostic and prognostic biomarke rs remains a formidable challenge.This review summarizes the latest research achievements concerning blood biomarkers in amyotrophic lateral sclerosis that can provide a more direct basis for the differential diagnosis and prognostic assessment of the disease beyond a reliance on clinical manifestations and electromyography findings.
基金supported by the National Natural Science Foundation of China(21176236)~~
文摘Pt/activated carbon (Pt/AC) catalyst combined with base works efficiently for lactic acid production from glycerol under mild conditions. Base type (LiOH, NaOH, KOH, or Ba(OH)2) and base/glycerol molar ratio significantly affected the catalytic performance. The corresponding lactic acid selectivity was in the order of LiOH〉NaOH〉KOH〉Ba(OH)2. An increase in LiOH/glycerol molar ratio ele‐vated the glycerol conversion and lactic acid selectivity to some degree, but excess LiOH inhibited the transformation of glycerol to lactic acid. In the presence of Pt/AC catalyst, the maximum selec‐tivity of lactic acid was 69.3% at a glycerol conversion of 100% after 6 h at 90 °C, with a Li‐OH/glycerol molar ratio of 1.5. The Pt/AC catalyst was recycled five times and was found to exhibit slightly decreased glycerol conversion and stable lactic acid selectivity. In addition, the experimental results indicated that reaction intermediate dihydroxyacetone was more favorable as the starting reagent for lactic acid formation than glyceraldehyde. However, the Pt/AC catalyst had adverse effects on the intermediate transformation to lactic acid, because it favored the catalytic oxidation of them to glyceric acid.
基金Supported by the Natural Science Foundation of Xinjiang University(070378)the Open Project Funding by the State Key Laboratory of Microbial Technology in Shandong University(M2011-07)~~
文摘[Objective] The aim was to conduct preliminary investigation and diversity analysis of lactic acid bacteria resources in forage from Turpan of Xinjiang. [Method] The lactic acid bacteria in the three kinds of forage ingredients in Xinjiang were isolated by using plate separation method and screened by MRS+CaCO3 solid medium. Morphological, physiological and biochemical identification and 16S rDNA gene sequence analysis were carried out to the isolated eighty strains of lactic acid bacteria, to explore its taxonomic status. [Result] Twenty strains of lactic acid bacteria were obtained from alfalfa, forty-one from wheat, and nineteen from corn. The physiological and biochemical identification and 16S rDNA gene sequence analysis results showed that the eighty strains of lactic acid bacteria belonged to two genera, namely, Lactobacillus, Enterococcus; 7 species, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus paracasei, Entercoccus faecium, Entercoccus durans, Lactobacillus plantarum, Entercoccus hirae. Lactobacillus casei and Entercoccus faecium were ubiquitous in the three kinds of forage ingredients. Besides these two lactic acid bacteria, there were Lactobacillus rhamnosus, Lactobacillus paracasei, Lactobacillus plantarum in wheat, Lactobacillus plantarum, Lactobacillus paracasei, Entercoccus hirae, Entercoccus durans in alfalfa, Lactobacillus plantarum, Entercoccus durans in corn. [Conclusion] There is a big diversity of lactic acid bacteria in different forage from Turpan of Xinjiang, in which Lactobacillus casei, Entercoccus faecium are the key bacteria for forage fermentation.
文摘Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA). The effects of cationic species on the structures and surface acid-base distributions of the ZSM-5 zeolites were investigated. The important factors that affect the catalytic performance were also identified. The modified ZSM-5 catalysts were characterized using X-ray diffraction, tempera- ture-programmed desorptions of NH3 and CO2, pyridine adsorption spectroscopy, and N2 adsorption to determine the crystal phase structures, surface acidities and basicities, nature of acid sites, specific surface areas, and pore volumes. The results show that the acid-base sites that are adjusted by alkali-metal species, particularly weak acid-base sites, are mainly responsible for the formation of AA. The KZSM-5 catalyst, in particular, significantly improved LA conversion and AA selectivity because of the synergistic effect of weak acid-base sites. The reaction was conducted at different reaction temperatures and liquid hourly space velocities (LHSVs) to understand the catalyst selectivity for AA and trends in byproduct formation. Approximately 98% LA conversion and 77% AA selectivity were achieved using the KZSM-5 catalyst under the optimum conditions (40 wt% LA aqueous solution, 365 ℃, and LHSV 2 h-1).
基金supported by the National Natural Science Foundation of China(21203183,21233008,21473188)~~
文摘Lactic acid is produced as a major byproduct during sorbitol hydrogenolysis under alkaline conditions.We investigated the effects of two different alkaline additives,Ca(OH)2 and La(OH)3,on lactic acid formation during sorbitol hydrogenolysis over Ni/C catalyst.In the case of Ca(OH)2,the selectivity of lactic acid was 8.9%.In contrast,the inclusion of La(OH)3 resulted in a sorbitol conversion of 99% with only trace quantities of lactic acid being detected.In addition,the total selectivity towards the C2 and C4 products increased from 20.0% to 24.5% going from Ca(OH)2 to La(OH)3.These results therefore indicated that La(OH)3 could be used as an efficient alkaline additive to enhance the conversion of sorbitol.Pyruvic aldehyde,which is formed as an intermediate during sorbitol hydrogenolysis,can be converted to both 1,2-propylene glycol and lactic acid by hydrogenation and rearrangement reactions,respectively.Notably,these two reactions are competitive.When Ca(OH)2 was used as an additive for sorbitol hydrogenolysis,both the hydrogenation and rearrangement reactions occurred.In contrast,the use of La(OH)3 favored the hydrogenation reaction,with only trace quantities of lactic acid being formed.
基金supported by the National Key R&D Program of China (2017YFD0502102)the National Technology Leader “Ten Thousand People Plan” of China (201502510410040)the National Key Technology R&D Program of China during the 12th Five-year Plan period of China (2011BAD17B02)
文摘This study assessed the effects of lactic acid bacteria(LAB), cellulase, cellulase-producing Bacillus pumilus and their combinations on the fermentation characteristics, chemical composition, bacterial community and in vitro digestibility of alfalfa silage. A completely randomized design involving a 8(silage additives)×3 or 2(silage days) factorial arrangement of treatments was adopted in the present study. The 8 silage additive treatments were: untreated alfalfa(control); two commercial additives(GFJ and Chikuso-1); an originally selected LAB(Lactobacillus plantarum a214) isolated from alfalfa silage; a cellulase-producing Bacillus(CB) isolated from fresh alfalfa; cellulase(C); and the combined additives(a214+C and a214+CB). Silage fermentation characteristics, chemical composition and microorganism populations were analysed after 30, 60 and 65 days(60 days followed by exposure to air for five additional days). In vitro digestibility was analysed for 30 and 60 days. Compared with the other treatments, selected LAB a214, a214 combined with either C or CB, and Chikuso-1 had the decreased(P<0.001) pH and increased(P<0.001) lactic acid concentrations during the ensiling process, and there were no differences(P>0.05) among them. Fiber degradation was not significant(P≥0.054) in any C or CB treatments. The a214 treatment showed the highest(P=0.009) in vitro digestibility of dry matter(595.0 g kg–1DM) after ensiling and the highest abundance of Lactobacillus(69.42 and 79.81%, respectively) on days 60 and 65, compared to all of other treatments. Overall, the silage quality of alfalfa was improved with the addition of a214, which indicates its potential as an alfalfa silage inoculant.
基金Supported by research grants from the Ministry of Economic Affairs of Taiwan,the Republic of China with grant NO.98-EC-17-A-17-S1-132
文摘Objective:To evaluate the ability of lactic acid bacteria(LAB)strains isolated from fermented mustard to lower the cholesterol in vitro.Methods:The ability of 50 LAB strains isolated from fermented mustard on lowering cholesterol in vitro was determined by modified o-phtshalaldehyde method.The LAB isolates were analyzed for their resistance to acid and bile salt.Strains with lowering cholesterol activity,were determined adherence to Caco-2 cells.Results:Strain B0007,B0006 and B0022 assimilated more cholesterol than BCRC10474 and BCRC17010.The isolated strains showed tolerance to pH 3.0 for 3h despite variations in the degree of viability and bile-tolerant strains,with more than 10~s CFU/mL after incubation for 24 h at 1%oxigall in MRS.In addition,strain B0007 and B0022 identified as Lactobacillus plantarum with 16S rDNA sequences were able to adhere to the Caco-2 cell lines.Conclusions:These strains B0007 and B0022 may be potential functional sources for cholesterollowering activities as well as adhering to Caco-2 cell lines.
基金supported by the project of Jiangsu Independent Innovation,China(CX(15)1003-3)the Key Technologies R&D Program of China during the 13th Five-Year Plan period(2016YFC0502005)the Special Project of Grass of Tibet Autonomous Region for the 13th Five-Year Plan,China
文摘This study was conducted to evaluate the effect of lactic acid bacteria and propionic acid on the fermentation quality, aer- obic stability and in vitro gas production kinetics and digestibility of whole-crop corn based totalmixed ration (TMR) silage. Total mixed ration was ensiled with four treatments: (1) no additives (control); (2) an inoculant (Lactobacillus plantarum) (L); (3) propionicacid (P); (4) propionic acid+lactic acid bacteria (PL). All treatments were ensiled in laboratory-scale silos for 45 days, and then subjected to an aerobic stability test for12 days. Further, four TMR silages were incubated in vitro with buffered rumen fluid to study in vitro gas production kinetics and digestibility. The results indicated that all TMR silages had good fermentation characteristics with low pH (〈3.80) and ammonia nitrogen (NH3-N) contents, and high lactic acid contents as well as Flieg points. Addition of L further improved TMR silage quality with more lactic acid production. Addition of P and PL decreased lactic acid and NH3-N contents of TMR silage compared to the control (P〈0.05). After 12 days aerobic exposure, P and PL silages remained stable, but L and the control silages deteriorated as indicated by a reduction in lactic acid and an increase in pH, and numbers of yeast. Compared to the control, addition of L had no effects on TMR silage in terms of 72 h cumulative gas production, in vitro dry matter digestibility, metabolizable energy, net energy for lactation and short chain fatty acids, whereas addition of PL significantly (P〈0.05) increased them. L silage had higher (P〈0.05) in vitro neutral detergent fiber digestibility than the control silage. The results of our study suggested that TMR silage prepared with whole-crop corn can be well preserved with or without additives. Furthermore, the findings of this study suggested that propionic acid is compatible with lactic acid bacteria inoculants, and when used together, although they reduced lactic acid production of TMR silage, they improved aerobic stability and in vitro nutrients digestibility of TMR silage.
基金Supported by Razi Vaccine And Serum Research Institute,Arak Branch,Iran(Grant No.TUMS/CMBRC-89-001)
文摘Objective:To determine lactic acid bacteria's capability to enhance the process of binding and isolating aflatoxin B1 and to utilize such lactic acid bacteria as a food supplement or probiotic products for preventing absorption of aflatoxin Bl in human and animal bodies.Methods:In the present research,the bacteria were isolated from five different sources.For surveying the capability of the bacteria in isolating aflatoxin Bl,ELISA method was implemented,and for identifying the resultant strains through 16S rRNA sequencing method,universal primers were applied.Results:Among the strains which were isolated,two strains of Lactobacillus pentosus and Lactobacillus beveris exhibited the capability of absorbing and isolating aflatoxin Bl by respectively absorbing and discharging 17.4%and 34.7%of the aforementioned toxin existing in the experiment solution.Conclusions:Strains of Lactobacillus pentosus and Lactobacillus beveris were isolated from human feces and local milk samples,respectively.And both strains has the ability to isolate or bind with aflatoxin Bl.
文摘To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSS-d) when the COD loading were designated as 18.8 g/(L-d) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.
基金supported by the National Key Technology Research and Development Program of China during the 12th Five-Year Plan period (2012BAD14B01)the Special Fund for Agro-Scientific Research in the Public Interest, China (201303080)
文摘To improve the nutritional value and the palatability of air-dried rice straw, culture broth of the lactic acid bacteria community SFC-2 was used to examine the effects of two different treatments, fermentation and adsorption. Air-dried and chopped rice straw was treated with either fermentation for 30 d after adding 1.5 L nutrient solution(50 m L inocula L–1, 1.2×1012 CFU m L–1 inocula) kg–1 straw dry matter, or spraying a large amount of culture broth(1.5 L kg–1 straw dry matter, 1.5×1011 CFU m L–1 culture broth) on the straw and allowing it to adsorb for 30 min. The feed quality and aerobic stability of the resulting forage were examined. Both treatments improved the feed quality of rice straw, and adsorption was better than fermentation for preserving nutrients and improving digestibility, as evidenced by higher dry matter(DM) and crude protein(CP) concentrations, lower neutral detergent fiber(NDF), acid detergent fiber(ADF) and NH3-N concentrations, as well as higher lactic acid production and in vitro digestibility of DM(IVDMD). The aerobic stability of the adsorbed straw and the fermented straw was 392 and 480 h, respectively. After being exposed to air, chemical components and microbial community of the fermented straw were more stable than the adsorbed straw.
文摘Species of lactic acid bacteria (LAB) represent as potential microorganisms and have been widely applied in food fermentation worldwide. Milk fermentation process has been relied on the activity of LAB, where transformation of milk to good quality of fermented milk products made possible. The presence of LAB in milk fermentation can be either as spontaneous or inoculated starter cultures. Both of them are promising cultures to be explored in fermented milk manufacture. LAB have a role in milk fermentation to produce acid which is important as preservative agents and generating flavour of the products. They also produce exopolysaccharides which are essential as texture formation. Considering the existing reports on several health-promoting properties as well as their generally recognized as safe (GRAS) status of LAB, they can be widely used in the developing of new fermented milk products.