Background: The nutritional support after hematopoietic stem cell transplantation (HSCT) has not been well established due to the scarcity of clinical trials. To conduct international clinical trials in Asia, we perfo...Background: The nutritional support after hematopoietic stem cell transplantation (HSCT) has not been well established due to the scarcity of clinical trials. To conduct international clinical trials in Asia, we performed the questionnaire survey to investigate the current standard of nutritional support after HSCT. Method: We sent the questionnaire to the physicians nominated by the Asia Pacific Blood and Marrow Transplantation (APBMT) members of each country/ region. Result: We received 15 responses from 7 different countries/regions. The target calorie amount is 1.0 - 1.3 × basal energy expenditure (BEE) in 11 institutes when partial parenteral nutrition is used. When total parenteral nutrition (TPN) is used, the target calorie amount is 1.0 - 1.3 × BEE in 9 institutes and 1.3 - 1.5 × BEE in 4 institutes. Lipid emulsion is routinely used in 12 institutes. Multivitamins and trace elements are routinely added to TPN used in most institutes. It is still uncommon to use the immunonutrition. Blood glucose levels are routinely monitored in all institutes, but the target range varies (<110 in 2 institutes, <150 in 4 institutes, and <200 in 8 institutes). Conclusions: Basic nutritional support is similar in participating institutes. However, the target glucose level varies and the use of immunonutrition is rather rare. These points can be the theme of future clinical trials.展开更多
The effects of pre-irradiation blood transfusion(BT)on survival rateof radiation-burn combinedly injured rats receiving bone marrow transplantation(BMT) were studied. It was found that after 9-11 Gy of radiation was g...The effects of pre-irradiation blood transfusion(BT)on survival rateof radiation-burn combinedly injured rats receiving bone marrow transplantation(BMT) were studied. It was found that after 9-11 Gy of radiation was given, the 90-daysurvival rate of the rats receiving BT(72%) and BMT was significantly higher than thatof those receiving BMT only(42%)(P<0.01).In those rats surviving over 100 days,cells of donor type could be found. In the first 30 days of surviving, the number of Tcells was significantly higher in the BMT alone group than in the group of BMT plusBT, but no difference In restoration of B cell was revealed. The findings suggest that BTcould promote the recipient's tolerance to BMT. The effects of BT on BMT are similarto those on skin grafting.展开更多
Rats,after inflicted with total lymphoid irradiation (TLI) of 10 Gy gamma rays (lethal dose) and treated with cyclophosphamide (CY),were further treated with bone marrow transplantation (BMT). Then the effects of bloo...Rats,after inflicted with total lymphoid irradiation (TLI) of 10 Gy gamma rays (lethal dose) and treated with cyclophosphamide (CY),were further treated with bone marrow transplantation (BMT). Then the effects of blood transfusion (BT) on the therapeutic effects of BMT and the survival of the rats were observed. It was found that after TLI and CY treatment, the rats were further treated with BT and all the animals died in 4-12 d after TLI. The 60 day survival rate of the rats treated 1 d after BMT with BT from the same donor of bone marrow and that of those rats treated with BMT only was 10% and that of those rats treated 1 d before BMT with BT from the same donor of bone marrow or from another donor was 20% and 40% respectively (P<0. 05). And the rats treated 3 d before BMTwith BT from the same donor of bone marrow all died of allergic reaction in 4-10 d after TLI. When CY was administered in divided doses, the 60-day survival rate of the rats treated 1 d before BMT with BT from the same donor of bone marrow was increased to 80%(PM0. 01). These findings indicate that the effects of BT on the enhancement of the therapeutic effects of BMT on radiation injury is determined with the time of BT.展开更多
Stem cells have their origins in the embryo and during the process of organogenesis, these differentiate into specialized cells which mature to form tissues. In addition, stem cell are characterized by an ability to i...Stem cells have their origins in the embryo and during the process of organogenesis, these differentiate into specialized cells which mature to form tissues. In addition, stem cell are characterized by an ability to indefinitely self renew. Stem cells are broadly classified into embryonic stem cells and adult stem cells. Adult stem cells can be genetically reprogrammed to form pluripotent stem cells and exist in an embroyonic like state. In the early phase of embryogenesis, human embryonic stem cells only exist transiently. Adult stem cells are omnipresent in the body and function to regenerate during the process of apoptosis or tissue repair. Hematopoietic stem cells(HSC) are adult stem cells that form blood and immune cells. Autoimmune responses are sustained due to the perennial persistence of tissue self autoantigens and/or auto reactive lymphocytes. Immune reset is a process leading to generation of fresh self-tolerant lymphocytes after chemotherapy induced elimination of self or autoreactive lymphocytes. This forms the basis for autologous HSC transplantation(HSCT). In the beginning HSCT had been limited to refractory autoimmune rheumatic diseases(AIRD) due to concern about transplant related mortality and morbidity. However HSCT for AIRD has come a long way with better understanding of patient selection, conditioning regime and supportive care. In this narrative review we have examined the available literature regarding the HSCT use in AIRD.展开更多
Hematopoietic stem cell transplant(HSCT) is a standard treatment for many hematological malignancies.Three different sources of stem cells, namely bone marrow(BM), peripheral blood stem cells(PBSC) and cord blood(CB) ...Hematopoietic stem cell transplant(HSCT) is a standard treatment for many hematological malignancies.Three different sources of stem cells, namely bone marrow(BM), peripheral blood stem cells(PBSC) and cord blood(CB) can be used for HSCT, and each has its own advantages and disadvantages. Randomized controlled trials(RCTs) suggest that there is no significant survival advantage of PBSC over BM in Human Leukocyte Antigen-matched sibling transplant for adult patients with hematological malignancies. PBSC transplant probably results in lower risk of relapse and hence better disease-free survival, especially in patients with high risk disease at the expense of higher risks of both severe acute and chronic graft-versus-host disease(GVHD).In the unrelated donor setting, the only RCT available suggests that PBSC and BM result in comparable overall and disease-free survivals in patients with hematological malignancies; and PBSC transplant results in lower risk of graft failure and higher risk of chronic GVHD.High level evidence is not available for CB in comparison to BM or PBSC. The risks and benefits of different sources of stem cells likely change with different conditioning regimen, strategies for prophylaxis and treatment of GVHD and manipulation of grafts. The recent success and rapid advance of double CB transplant and haploidentical BM and PBSC transplants further complicate the selection of stem cell source. Optimal selection requires careful weighing of the risks and benefits of different stem cell source for each individual recipient and donor. Detailed counseling of patient and donor regarding risks and benefits in the specific context of the patient and transplant method is essential for informed decision making.展开更多
OBJECTIVE: The aim of this study was to evaluate the effectiveness and safety of stem cell transplantation for spinal cord injury(SCI).DATA SOURCES: PubM ed, EMBASE, Cochrane, China National Knowledge Infrastructu...OBJECTIVE: The aim of this study was to evaluate the effectiveness and safety of stem cell transplantation for spinal cord injury(SCI).DATA SOURCES: PubM ed, EMBASE, Cochrane, China National Knowledge Infrastructure, China Science and Technology Journal, Wanfang, and Sino Med databases were systematically searched by computer to select clinical randomized controlled trials using stem cell transplantation to treat SCI, published between each database initiation and July 2016. DATA SELECTION: Randomized controlled trials comparing stem cell transplantation with rehabilitation treatment for patients with SCI. Inclusion criteria:(1) Patients with SCI diagnosed according to the American Spinal Injury Association(ASIA) International standards for neurological classification of SCI;(2) patients with SCI who received only stem cell transplantation therapy or stem cell transplantation combined with rehabilitation therapy;(3) one or more of the following outcomes reported: outcomes concerning neurological function including sensory function and locomotor function, activities of daily living, urination functions, and severity of SCI or adverse effects. Studies comprising patients with complications, without full-text, and preclinical animal models were excluded. Quality of the included studies was evaluated using the Cochrane risk of bias assessment tool and Rev Man V5.3 software, provided by the Cochrane Collaboration, was used to perform statistical analysis. OUTCOME MEASURES: ASIA motor score, ASIA light touch score, ASIA pinprick score, ASIA impairment scale grading improvement rate, activities of daily living score, residual urine volume, and adverse events.RESULTS: Ten studies comprising 377 patients were included in the analysis and the overall risk of bias was relatively low level. Four studies did not detail how random sequences were generated, two studies did not clearly state the blinding outcome assessment, two studies lacked blinding outcome assessment, one study lacked follow-up information, and four studies carried out selective reporting. Compared with rehabilitation therapy, stem cell transplantation significantly increased the lower limb light touch score(odds ratio(OR) = 3.43, 95% confidence interval(CI): 0.01 – 6.86, P = 0.05), lower limb pinprick score(OR = 3.93, 95%CI: 0.74 – 7.12, P = 0.02), ASI grading rate(relative risk(RR) = 2.95, 95%CI: 1.64 – 5.29, P = 0.0003), and notably reduced residual urine volume(OR = –8.10, 95%CI: –15.09 to –1.10, P = 0.02). However, stem cell transplantation did not significantly improve motor score(OR = 1.89, 95%CI: –0.25 to 4.03, P = 0.08) or activities of daily living score(OR = 1.12, 95%CI: –1.17 to 4.04, P = 0.45). Furthermore, stem cell transplantation caused a high rate of mild adverse effects(RR = 14.49, 95%CI: 5.34 – 34.08, P 〈 0.00001); however, these were alleviated in a short time. CONCLUSION: Stem cell transplantation was determined to be an efficient and safe treatment for SCI and simultaneously improved sensory and bladder functions. Although associated minor and temporary adverse effects were observed with transplanted stem cells, spinal cord repair and axon remyelination were apparent. More randomized controlled trials with larger sample sizes and longer follow-up times are needed to further validate the effectiveness of stem cell transplantation in the treatment of SCI.展开更多
Combined treatment of ischemic stroke with Chinese medicine and exogenous bone marrow mesenchymal stem cell(BMSC) transplantation may improve the removal of blood stasis and stimulation of neogenesis.Chinese medicines...Combined treatment of ischemic stroke with Chinese medicine and exogenous bone marrow mesenchymal stem cell(BMSC) transplantation may improve the removal of blood stasis and stimulation of neogenesis.Chinese medicines that remove blood stasis not only promote blood circulation but also calm the endopathic wind,remove heat,resolve phlegm,remove toxic substances and strengthen body resistance.The medicinal targeting effect of Chinese medicine can promote the homing of BMSCs,and the synergistic therapeutic effects of drugs can contribute to BMSC differentiation.As such,exogenous BMSC transplantation has potential advantages for neogenesis.Chinese medicines and exogenous BMSCs provide complementary functions for the removal of blood stasis and stimulation of neogenesis.Therefore,a combination of Chinese medicine and transplantation of exogenous BMSCs may be particularly suited to ischemic stroke treatment.展开更多
文摘Background: The nutritional support after hematopoietic stem cell transplantation (HSCT) has not been well established due to the scarcity of clinical trials. To conduct international clinical trials in Asia, we performed the questionnaire survey to investigate the current standard of nutritional support after HSCT. Method: We sent the questionnaire to the physicians nominated by the Asia Pacific Blood and Marrow Transplantation (APBMT) members of each country/ region. Result: We received 15 responses from 7 different countries/regions. The target calorie amount is 1.0 - 1.3 × basal energy expenditure (BEE) in 11 institutes when partial parenteral nutrition is used. When total parenteral nutrition (TPN) is used, the target calorie amount is 1.0 - 1.3 × BEE in 9 institutes and 1.3 - 1.5 × BEE in 4 institutes. Lipid emulsion is routinely used in 12 institutes. Multivitamins and trace elements are routinely added to TPN used in most institutes. It is still uncommon to use the immunonutrition. Blood glucose levels are routinely monitored in all institutes, but the target range varies (<110 in 2 institutes, <150 in 4 institutes, and <200 in 8 institutes). Conclusions: Basic nutritional support is similar in participating institutes. However, the target glucose level varies and the use of immunonutrition is rather rare. These points can be the theme of future clinical trials.
文摘The effects of pre-irradiation blood transfusion(BT)on survival rateof radiation-burn combinedly injured rats receiving bone marrow transplantation(BMT) were studied. It was found that after 9-11 Gy of radiation was given, the 90-daysurvival rate of the rats receiving BT(72%) and BMT was significantly higher than thatof those receiving BMT only(42%)(P<0.01).In those rats surviving over 100 days,cells of donor type could be found. In the first 30 days of surviving, the number of Tcells was significantly higher in the BMT alone group than in the group of BMT plusBT, but no difference In restoration of B cell was revealed. The findings suggest that BTcould promote the recipient's tolerance to BMT. The effects of BT on BMT are similarto those on skin grafting.
文摘Rats,after inflicted with total lymphoid irradiation (TLI) of 10 Gy gamma rays (lethal dose) and treated with cyclophosphamide (CY),were further treated with bone marrow transplantation (BMT). Then the effects of blood transfusion (BT) on the therapeutic effects of BMT and the survival of the rats were observed. It was found that after TLI and CY treatment, the rats were further treated with BT and all the animals died in 4-12 d after TLI. The 60 day survival rate of the rats treated 1 d after BMT with BT from the same donor of bone marrow and that of those rats treated with BMT only was 10% and that of those rats treated 1 d before BMT with BT from the same donor of bone marrow or from another donor was 20% and 40% respectively (P<0. 05). And the rats treated 3 d before BMTwith BT from the same donor of bone marrow all died of allergic reaction in 4-10 d after TLI. When CY was administered in divided doses, the 60-day survival rate of the rats treated 1 d before BMT with BT from the same donor of bone marrow was increased to 80%(PM0. 01). These findings indicate that the effects of BT on the enhancement of the therapeutic effects of BMT on radiation injury is determined with the time of BT.
文摘Stem cells have their origins in the embryo and during the process of organogenesis, these differentiate into specialized cells which mature to form tissues. In addition, stem cell are characterized by an ability to indefinitely self renew. Stem cells are broadly classified into embryonic stem cells and adult stem cells. Adult stem cells can be genetically reprogrammed to form pluripotent stem cells and exist in an embroyonic like state. In the early phase of embryogenesis, human embryonic stem cells only exist transiently. Adult stem cells are omnipresent in the body and function to regenerate during the process of apoptosis or tissue repair. Hematopoietic stem cells(HSC) are adult stem cells that form blood and immune cells. Autoimmune responses are sustained due to the perennial persistence of tissue self autoantigens and/or auto reactive lymphocytes. Immune reset is a process leading to generation of fresh self-tolerant lymphocytes after chemotherapy induced elimination of self or autoreactive lymphocytes. This forms the basis for autologous HSC transplantation(HSCT). In the beginning HSCT had been limited to refractory autoimmune rheumatic diseases(AIRD) due to concern about transplant related mortality and morbidity. However HSCT for AIRD has come a long way with better understanding of patient selection, conditioning regime and supportive care. In this narrative review we have examined the available literature regarding the HSCT use in AIRD.
文摘Hematopoietic stem cell transplant(HSCT) is a standard treatment for many hematological malignancies.Three different sources of stem cells, namely bone marrow(BM), peripheral blood stem cells(PBSC) and cord blood(CB) can be used for HSCT, and each has its own advantages and disadvantages. Randomized controlled trials(RCTs) suggest that there is no significant survival advantage of PBSC over BM in Human Leukocyte Antigen-matched sibling transplant for adult patients with hematological malignancies. PBSC transplant probably results in lower risk of relapse and hence better disease-free survival, especially in patients with high risk disease at the expense of higher risks of both severe acute and chronic graft-versus-host disease(GVHD).In the unrelated donor setting, the only RCT available suggests that PBSC and BM result in comparable overall and disease-free survivals in patients with hematological malignancies; and PBSC transplant results in lower risk of graft failure and higher risk of chronic GVHD.High level evidence is not available for CB in comparison to BM or PBSC. The risks and benefits of different sources of stem cells likely change with different conditioning regimen, strategies for prophylaxis and treatment of GVHD and manipulation of grafts. The recent success and rapid advance of double CB transplant and haploidentical BM and PBSC transplants further complicate the selection of stem cell source. Optimal selection requires careful weighing of the risks and benefits of different stem cell source for each individual recipient and donor. Detailed counseling of patient and donor regarding risks and benefits in the specific context of the patient and transplant method is essential for informed decision making.
基金supported by the National Natural Science Foundation of China,No.81273775
文摘OBJECTIVE: The aim of this study was to evaluate the effectiveness and safety of stem cell transplantation for spinal cord injury(SCI).DATA SOURCES: PubM ed, EMBASE, Cochrane, China National Knowledge Infrastructure, China Science and Technology Journal, Wanfang, and Sino Med databases were systematically searched by computer to select clinical randomized controlled trials using stem cell transplantation to treat SCI, published between each database initiation and July 2016. DATA SELECTION: Randomized controlled trials comparing stem cell transplantation with rehabilitation treatment for patients with SCI. Inclusion criteria:(1) Patients with SCI diagnosed according to the American Spinal Injury Association(ASIA) International standards for neurological classification of SCI;(2) patients with SCI who received only stem cell transplantation therapy or stem cell transplantation combined with rehabilitation therapy;(3) one or more of the following outcomes reported: outcomes concerning neurological function including sensory function and locomotor function, activities of daily living, urination functions, and severity of SCI or adverse effects. Studies comprising patients with complications, without full-text, and preclinical animal models were excluded. Quality of the included studies was evaluated using the Cochrane risk of bias assessment tool and Rev Man V5.3 software, provided by the Cochrane Collaboration, was used to perform statistical analysis. OUTCOME MEASURES: ASIA motor score, ASIA light touch score, ASIA pinprick score, ASIA impairment scale grading improvement rate, activities of daily living score, residual urine volume, and adverse events.RESULTS: Ten studies comprising 377 patients were included in the analysis and the overall risk of bias was relatively low level. Four studies did not detail how random sequences were generated, two studies did not clearly state the blinding outcome assessment, two studies lacked blinding outcome assessment, one study lacked follow-up information, and four studies carried out selective reporting. Compared with rehabilitation therapy, stem cell transplantation significantly increased the lower limb light touch score(odds ratio(OR) = 3.43, 95% confidence interval(CI): 0.01 – 6.86, P = 0.05), lower limb pinprick score(OR = 3.93, 95%CI: 0.74 – 7.12, P = 0.02), ASI grading rate(relative risk(RR) = 2.95, 95%CI: 1.64 – 5.29, P = 0.0003), and notably reduced residual urine volume(OR = –8.10, 95%CI: –15.09 to –1.10, P = 0.02). However, stem cell transplantation did not significantly improve motor score(OR = 1.89, 95%CI: –0.25 to 4.03, P = 0.08) or activities of daily living score(OR = 1.12, 95%CI: –1.17 to 4.04, P = 0.45). Furthermore, stem cell transplantation caused a high rate of mild adverse effects(RR = 14.49, 95%CI: 5.34 – 34.08, P 〈 0.00001); however, these were alleviated in a short time. CONCLUSION: Stem cell transplantation was determined to be an efficient and safe treatment for SCI and simultaneously improved sensory and bladder functions. Although associated minor and temporary adverse effects were observed with transplanted stem cells, spinal cord repair and axon remyelination were apparent. More randomized controlled trials with larger sample sizes and longer follow-up times are needed to further validate the effectiveness of stem cell transplantation in the treatment of SCI.
基金Supported by The Science and Technology Development Fund of Macao Special Administrative Region(No.048/2008/ A3)
文摘Combined treatment of ischemic stroke with Chinese medicine and exogenous bone marrow mesenchymal stem cell(BMSC) transplantation may improve the removal of blood stasis and stimulation of neogenesis.Chinese medicines that remove blood stasis not only promote blood circulation but also calm the endopathic wind,remove heat,resolve phlegm,remove toxic substances and strengthen body resistance.The medicinal targeting effect of Chinese medicine can promote the homing of BMSCs,and the synergistic therapeutic effects of drugs can contribute to BMSC differentiation.As such,exogenous BMSC transplantation has potential advantages for neogenesis.Chinese medicines and exogenous BMSCs provide complementary functions for the removal of blood stasis and stimulation of neogenesis.Therefore,a combination of Chinese medicine and transplantation of exogenous BMSCs may be particularly suited to ischemic stroke treatment.