Diabetes therapy is normally based on discrete insulin infusion that uses long-time interval measurements. Nevertheless, in this paper, a continuous drug infusion closed-loop control system was proposed to avoid the t...Diabetes therapy is normally based on discrete insulin infusion that uses long-time interval measurements. Nevertheless, in this paper, a continuous drug infusion closed-loop control system was proposed to avoid the traditional discrete approaches by automating diabetes therapy. Based on a continuous insulin injection model, two controllers were designed to deal with this plant. The controllers designed in this paper are: proportional integral derivative (PID), and fuzzy logic controllers (FLC). Simulation results have illustrated that the fuzzy logic controller outperformed the PID controller. These results were based on serious disturbances to glucose, such as exercise, delay or noise in glucose sensor and nutrition mixed meal absorption at meal time.展开更多
A discrete insulin infusion based on long-time interval measurement is the classic technique for diabetes treatment. Nevertheless, in this research, a closed-loop control system was proposed for continuous drug infusi...A discrete insulin infusion based on long-time interval measurement is the classic technique for diabetes treatment. Nevertheless, in this research, a closed-loop control system was proposed for continuous drug infusion to overcome the drawbacks of these typical discrete methods and develop more practical diabetes therapy systems. A blood glucose-insulin system was implemented relying on continuous insulin injection model. Based on this model, two controllers were designed to deal with the control dilemma of the resulting highly nonlinear plant. The controllers designed in this paper are: proportional integral derivative (PID), and sliding table controllers. Simulation results have shown that the sliding table controller can outperform the PID controller even with severe circumstances of disturbance in glucose, such as exercise, delay or noise in glucose sensor and nutrition mixed meal absorption at meal times.展开更多
文摘Diabetes therapy is normally based on discrete insulin infusion that uses long-time interval measurements. Nevertheless, in this paper, a continuous drug infusion closed-loop control system was proposed to avoid the traditional discrete approaches by automating diabetes therapy. Based on a continuous insulin injection model, two controllers were designed to deal with this plant. The controllers designed in this paper are: proportional integral derivative (PID), and fuzzy logic controllers (FLC). Simulation results have illustrated that the fuzzy logic controller outperformed the PID controller. These results were based on serious disturbances to glucose, such as exercise, delay or noise in glucose sensor and nutrition mixed meal absorption at meal time.
文摘A discrete insulin infusion based on long-time interval measurement is the classic technique for diabetes treatment. Nevertheless, in this research, a closed-loop control system was proposed for continuous drug infusion to overcome the drawbacks of these typical discrete methods and develop more practical diabetes therapy systems. A blood glucose-insulin system was implemented relying on continuous insulin injection model. Based on this model, two controllers were designed to deal with the control dilemma of the resulting highly nonlinear plant. The controllers designed in this paper are: proportional integral derivative (PID), and sliding table controllers. Simulation results have shown that the sliding table controller can outperform the PID controller even with severe circumstances of disturbance in glucose, such as exercise, delay or noise in glucose sensor and nutrition mixed meal absorption at meal times.