In the first article of this series, we presented some evidence of hyperforin as an antibiotic, antiprotozoal, antiviral, anticancer, and immunomodulatory substance. In the present article, evidence of the permeabilit...In the first article of this series, we presented some evidence of hyperforin as an antibiotic, antiprotozoal, antiviral, anticancer, and immunomodulatory substance. In the present article, evidence of the permeability of the blood-testis barrier (BTB) and blood-brain barrier (BBB) to hyperforin and its distribution in other organs of the domestic pig (Sus scrofa domesticus) are revealed. Seven-month-old male boars with a body mass of 100 kg were fed a diet containing hyperforin. Organs were surgically removed under anesthesia. Organs were suitable prepared and extracted, and then analyzed using gas chromatography-mass spectrometry with supersonic molecular beams (GC-MS with SMB). The presence of hyperforin was recorded in all organs and body fluids. Special attention was paid to the evaluation of the presence of hyperforin in the brain and testes of experimental animals. The presence of hyperforin in the brain and testes of experimental animals was established by GC-MS with SMB. The results are of interest because penicillin and numerous other antibiotics cannot pass through the BTB or BBB if healthy or non-inflamed, which limits their use in patients with meningitis and gonorrhea. The findings are also of interest in cases of penicillin- and multi-antibiotic-resistant bacterial infections.展开更多
The blood-testis barrier (BTB) is found between adjacent Sertoli cells in the testis where it creates a unique microenvironment for the development and maturation of meiotic and postmeiotic germ cells in seminiferou...The blood-testis barrier (BTB) is found between adjacent Sertoli cells in the testis where it creates a unique microenvironment for the development and maturation of meiotic and postmeiotic germ cells in seminiferous tubes. It is a compound proteinous structure, composed of several types of cell junctions including tight junctions (TJs), adhesion junctions and gap junctions (GJs). Some of the junctional proteins function as structural proteins of BTB and some have regulatory roles. The deletion or functional silencing of genes encoding these proteins may disrupt the BTB, which may cause immunological or other damages to meiotic and postmeiotic cells and ultimately lead to spermatogenic arrest and infertility. In this review, we will summarize the findings on the BTB structure and function from genetically-modified mouse models and discuss the future perspectives.展开更多
Objective To study the effect of electromagnetic pulse (EMP) exposure on the permeability of blood-testicle barrier (BTB) in mice. Methods Adult male BALB/c mice were exposed to EMP at 200 kV/m for 200 pulses with...Objective To study the effect of electromagnetic pulse (EMP) exposure on the permeability of blood-testicle barrier (BTB) in mice. Methods Adult male BALB/c mice were exposed to EMP at 200 kV/m for 200 pulses with 2 seconds interval. The mice were injected with 2% Evans Blue solution through caudal vein at different time points after exposure, and the permeability of BTB was monitored using a fluorescence microscope. The testis sample for the transmission electron microscopy was prepared at 2 h after EMP exposure. The permeability of BTB in mice was observed by using Evans Blue tracer and lanthanum nitrate tracer. Results After exposure, cloudy Evans Blue was found in the testicle convoluted seminiferous tubule of mice. Lanthanum nitrate was observed not only between testicle spermatogonia near seminiferous tubule wall and sertoli cells, but also between sertoli cells and primary spermatocyte or secondary spermatocyte. In contrast, lanthanum nitrate in control group was only found in the testicle sertoli cells between seminiferous tubule and near seminifdrous tubule wall. Conclusion EMP exposure could increase the permeability of BTB in the mice.展开更多
During spermatogenesis, developi ng germ cells that lack the cellular ultrastructures of filopodia and lamellipodia gen erally found in migrating cells, such as macrophages and fibroblasts, rely on Sertoli cells to su...During spermatogenesis, developi ng germ cells that lack the cellular ultrastructures of filopodia and lamellipodia gen erally found in migrating cells, such as macrophages and fibroblasts, rely on Sertoli cells to support their transport across the seminiferous epithelium. These in elude the transport of preleptote ne spermatocytes across the blood-testis barrier (BTB), but also the transport of germ cells, in particular developing haploid spermatids, across the seminiferous epithelium, that is to and away from the tubule lumen, depending on the stages of the epithelial cycle. On the other hand, cell junctions at the Sertoli cell-cell and Sertoli-germ cell in terface also un dergo rapid remodeli ng, invo Iving disassembly and reassembly of cell j un ctions, which, in turn, are supported by actin- and microtubule-based cytoskeletal remodeling. Interestingly, the underlying mechanism(s) and the invoIving biomolecule(s) that regulate or support cytoskeletal remodeling remain largely unknown. Herein, we used an in vitro model of primary Sertoli cell cultures that mimicked the Sertoli BTB in vivo overexpressed with the ribosomal protei n S6 (rpS6, the down stream signali ng protein of mammalian target of rapamycin complex 1 [mTORCl]) cloned into the mammalian expression vector pCI-neo, namely, quadruple phosphomimetic and constitutively active mutant of rpS6 (pCI-neo/p-rpS6-MT) versus pCI-neo/rpS6-WT (wild-type) and empty vector (pCI-neo/Ctrl) for studies. These findings provide compelling evidence that the mT0RCl/rpS6 signal pathway exerted its effects to promote Sertoli cell BTB remodeling. This was mediated through changes in the organization of actin- and microtubulebased cytoskeletons, involving changes in the distribution and/or spatial expression of actin- and microtubule-regulatory proteins.展开更多
The roles of E-cadherin and α-catenin were evaluated in the development of varicocele-induced infertility. Analysis of the association between the expression of E-cadherinla-catenin and clinical/pathological paramete...The roles of E-cadherin and α-catenin were evaluated in the development of varicocele-induced infertility. Analysis of the association between the expression of E-cadherinla-catenin and clinical/pathological parameters was performed. Thirty lO-week-old male rats (experimental group) were used for the experiments; the left renal vein was ligated to form a varicocele. The abdomen was incised in 30 rats (control group) and no procedure was performed on 10 rats (baseline group). The weights of the left testis, serum reactive oxygen species (ROS), testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH) and degenerative changes in the seminiferous tubules after 4 and 8 weeks were recorded. The expression of E-cadherin and α-catenin was evaluated by immunohistochemical (IHC) staining and Western blot analysis. The ROS increased in the 8-week experimental group, compared with the baseline and control groups (P〈0.001 for both). Additionally, FSH significantly increased in the 4- and 8-week experimental group compared with the control groups (P= 0.013 and P= 0.032, respectively). The ratio of degenerative changes in the seminiferous tubules of the experimental groups increased. The IHC staining showed that the expression of E-cadherin and a-catenin decreased in the 4- and 8-week experimental groups. Similar to the IHC staining, the experimental group had decreased reactivity on Western blot analysis. The expression of E-cadherin and a-catenin was significantly associated with the ROS and degenerative changes in the seminiferous tubules. The results of this study suggest that damage to the blood-testis barrier (BTB) is associated with varicocele-induced male infertility, and that ROS may cause damage to the BTB.展开更多
Objective This study was designed to provide the evidences on the toxicokinetics of microplastics(MPs)and nanoplastics(NPs)in the bodies of mammals.Methods 100 nm,3μm,and 10μm fluorescent polystyrene(PS)beads were a...Objective This study was designed to provide the evidences on the toxicokinetics of microplastics(MPs)and nanoplastics(NPs)in the bodies of mammals.Methods 100 nm,3μm,and 10μm fluorescent polystyrene(PS)beads were administered to mice once by gavage at a dose of 200 mg/kg body weight.The levels and change of fluorescence intensity in samples of blood,subcutaneous fat,perirenal fat,peritesticular fat,cerebrum,cerebellum,testis,and epididymis were measured at 0.5,1,2,and 4 h after administration using an IVIS Spectrum small-animal imaging system.Histological examination,confocal laser scanning,and transmission electron microscope were performed to corroborate the findings.Results After confirming fluorescent dye leaching and impact of pH value,increased levels of fluorescence intensity in blood,all adipose tissues examined,cerebrum,cerebellum,and testis were measured in the 100 nm group,but not in the 3 and 10μm groups except in the cerebellum and testis at 4 h for the 3μm PS beads.The presence of PS beads was further corroborated.Conclusion After a single oral exposure,NPs are absorbed rapidly in the blood,accumulate in adipose tissues,and penetrate the blood-brain/testis barriers.As expected,the toxicokinetics of MPs is significantly size-dependent in mammals.展开更多
In recent years,various serious diseases caused by Zika virus(ZIKV)have made it impossible to be ignored.Confirmed existence of ZIKV in semen and sexually transmission of ZIKV suggested that it can break the blood–te...In recent years,various serious diseases caused by Zika virus(ZIKV)have made it impossible to be ignored.Confirmed existence of ZIKV in semen and sexually transmission of ZIKV suggested that it can break the blood–testis barrier(BTB),or Sertoli cell barrier(SCB).However,little is known about the underlying mechanism.In this study,interaction between actin,an important component of the SCB,and ZIKV envelope(E)protein domainⅢ(EDⅢ)was inferred from coimmunoprecipitation(Co-IP)liquid chromatography–tandem mass spectrometry(LC–MS/MS)analysis.Confocal microscopy confirmed the role of actin filaments(F-actin)in ZIKV infection,during which part of the stress fibers,the bundles that constituted by paralleled actin filaments,were disrupted and presented in the cell periphery.Colocalization of E and reorganized actin filaments in the cell periphery of transfected Sertoli cells suggests a participation of ZIKV E protein in ZIKV-induced F-actin rearrangement.Perturbation of F-actin by cytochalasin D(CytoD)or Jasplakinolide(Jas)enhanced the infection of ZIKV.More importantly,the transepithelial electrical resistance(TEER)of an in vitro mouse SCB(mSCB)model declined with the progression of ZIKV infection or overexpression of E protein.Co-IP and confocal microscopy analyses revealed that the interaction between F-actin and tight junction protein ZO-1 was reduced after ZIKV infection or E protein overexpression,highlighting the role of E protein in ZIKV-induced disruption of the BTB.We conclude that the interaction between ZIKV E and F-actin leads to the reorganization of F-actin network,thereby compromising BTB integrity.展开更多
目的:探讨机体摄入大量乙醇后,血睾屏障(blood-testis barrier,BTB)能否有效阻止含乙型肝炎病毒(hepatitis B virus,HBV)DNA的质粒转染生精小管生精上皮细胞和影响BTB完整性的因素。方法:取20只Wistar成熟雄性大鼠随机分为实验组(A组)...目的:探讨机体摄入大量乙醇后,血睾屏障(blood-testis barrier,BTB)能否有效阻止含乙型肝炎病毒(hepatitis B virus,HBV)DNA的质粒转染生精小管生精上皮细胞和影响BTB完整性的因素。方法:取20只Wistar成熟雄性大鼠随机分为实验组(A组)和对照组(B组),应用聚合酶链反应(polymerase chain reaction,PCR)和原位杂交(in situ hybridization,ISH)检测HBVDNA的存在和生精小管的转染情况,应用透射电子显微镜(transmission electron microscopy,TEM)技术检测BTB与生精内环境的超微结构形态学变化。结果:①PCR:A组样本可见特异的HBVDNA阳性条带;②原位杂交:A组发现阳性杂交信号弥散,可被广泛发现于生精上皮基底室和近腔室的生精细胞上;③TEM:A组大鼠睾的生精小管基膜厚薄不均,基膜组织疏松增厚,成波浪式皱褶,可见基膜断裂,精原细胞与支持细胞及生精小管的基膜之间出现较多空泡,生精小管、生精上皮、生精细胞及支持细胞与相邻细胞之间的间隙扩大。结论:BTB的完整性是其起保护功能的重要基础,乙醇可以破坏其完整性,会使全部生精细胞易受HBV的感染。展开更多
Artificial cryptorchidism or local testicular heat treatment can induce reversible oligospermia or azoospermia in monkeys and rats via germ cell apoptosis. Local warming of monkey testes in water at 43°C for 2 co...Artificial cryptorchidism or local testicular heat treatment can induce reversible oligospermia or azoospermia in monkeys and rats via germ cell apoptosis. Local warming of monkey testes in water at 43°C for 2 consecutive days (30 min per day) decreased the number of sperm in the semen by up to 80% on d 28, and the effect was completely reversed on d 144. Germ cells rely heavily on Sertoli cells for structural and nutritional support. Specialized junctions that play a pivotal role in spermatogenesis occur at sites of Sertoli-Sertoli and Sertoli-germ cell contact in the seminiferous epithelium. We demonstrated that expression of tight junction (TJ)-associated molecules, such as occludin and zonula occludens-1 (ZO-1), were greatly reduced 24–48 h after heat treatment, while the permeability of the blood-testis barrier (BTB) was simultaneously increased, but recovered 10 d later. These results indicate a reversible disruption of the BTB associated with transient inductions of transforming growth factor (TGF) β2 and β3 expression, p38 mitogen-activated protein kinase and extracellular signal-regulated kinase activation, and concomitant loss of occludin and ZO-1. This suggests that expression of TJ-associated molecules and the BTB was reversibly perturbed by mild testicular hyperthermia, and that the heat-induced induction of TGF-β might be involved in downregulating TJ-associated proteins, leading to cell junction reduction. This review discusses the changes in total gene expression patterns after experimental cryptorchidism in adult mouse testes, and the cloning of several novel, physiologically significant spermatogenesis-specific genes.展开更多
The Sertoli cell tight junction (T J) is the key component of the blood-testis barrier, where it sequesters developing germ cells undergoing spermatogenesis within the seminiferous tubules. Hormonally regulated clau...The Sertoli cell tight junction (T J) is the key component of the blood-testis barrier, where it sequesters developing germ cells undergoing spermatogenesis within the seminiferous tubules. Hormonally regulated claudin-11 is a critical transmembrane protein involved in barrier function and its murine knockout results in infertility. We aimed to assess quantitatively the significance of the contribution of claudin-11 to TJ function, in vitro, using siRNA-mediated gene silencing. We also conducted an analysis of the contribution of occludin, another intrinsic transmembrane protein of the TJ. Silencing of claudin-11 and/or occludin was conducted using siRNA in an immature rat Sertoli cell culture model. Transepithelial electrical resistance was used to assess quantitatively TJ function throughout the culture. Two days after siRNA treatment, cells were fixed for immunocytochemical localization of junction proteins or lyzed for RT-PCR assessment of mRNA expression. Silencing of claudin-11, occludin, or both resulted in significant decreases in TJ function of 55% (P 〈 0.01), 51% (P 〈 0.01), and 62% (P 〈 0.01), respectively. Data were concomitant with significant decreases in mRNA expression and marked reductions in the localization of targeted proteins to the Sertoli cell TJ. We provide quantitative evidence that claudin-11 contributes significantly (P 〈 0.01) to Sertoli cell TJ function in vitro. Interestingly, occludin, which is hormonally regulated but not implicated in infertility until late adulthood, is also a significant (P 〈 0.01) contributor to barrier function. Our data are consistent with in vivo studies that clearly demonstrate a role for these proteins in maintaining normal TJ barrier structure and function.展开更多
Ezrin, radixin, moesin and merlin (ERM) proteins are highly homologous actin-binding proteins that share extensive sequence similarity with each other. These proteins tether integral membrane proteins and their cyto...Ezrin, radixin, moesin and merlin (ERM) proteins are highly homologous actin-binding proteins that share extensive sequence similarity with each other. These proteins tether integral membrane proteins and their cytoplasmic peripheral proteins (e.g., adaptors, nonreceptor protein kinases and phosphatases) to the microfilaments of actin-based cytoskeleton. Thus, these proteins are crucial to confer integrity of the apical membrane domain and its associated junctional complex, namely the tight junction and the adherens junction. Since ectoplasmic specialization (ES) is an F-actin-rich testis-specific anchoring junction-a highly dynamic ultrastructure in the seminiferous epithelium due to continuous transport of germ cells, in particular spermatids, across the epithelium during the epithelial cycle-it is conceivable that ERM proteins are playing an active role in these events. Although these proteins were first reported almost 25 years and have since been extensively studied in multiple epithelia/endothelia, few reports are found in the literature to examine their role in the actin filament bundles at the ES. Studies have shown that ezrin is also a constituent protein of the actin-based tunneling nanotubes (TNT) also known as intercellular bridges, which are transient cytoplasmic tubular ultrastructures that transport signals, molecules and even organelles between adjacent and distant cells in an epithelium to coordinate cell events that occur across an epithelium. Herein, we critically evaluate recent data on ERM in light of recent findings in the field in particular ezrin regarding its role in actin dynamics at the ES in the testis, illustrating additional studies are warranted to examine its physiological significance in spermatogenesis.展开更多
文摘In the first article of this series, we presented some evidence of hyperforin as an antibiotic, antiprotozoal, antiviral, anticancer, and immunomodulatory substance. In the present article, evidence of the permeability of the blood-testis barrier (BTB) and blood-brain barrier (BBB) to hyperforin and its distribution in other organs of the domestic pig (Sus scrofa domesticus) are revealed. Seven-month-old male boars with a body mass of 100 kg were fed a diet containing hyperforin. Organs were surgically removed under anesthesia. Organs were suitable prepared and extracted, and then analyzed using gas chromatography-mass spectrometry with supersonic molecular beams (GC-MS with SMB). The presence of hyperforin was recorded in all organs and body fluids. Special attention was paid to the evaluation of the presence of hyperforin in the brain and testes of experimental animals. The presence of hyperforin in the brain and testes of experimental animals was established by GC-MS with SMB. The results are of interest because penicillin and numerous other antibiotics cannot pass through the BTB or BBB if healthy or non-inflamed, which limits their use in patients with meningitis and gonorrhea. The findings are also of interest in cases of penicillin- and multi-antibiotic-resistant bacterial infections.
基金This work was supported by the National Basic Research Program (Nos. 2013CB947900, 2013CB945502 and 2014CB943101) of China (973), by grants from National Natural Science Foundation of China (No. 31371519) and the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX2-EW-R-07).
文摘The blood-testis barrier (BTB) is found between adjacent Sertoli cells in the testis where it creates a unique microenvironment for the development and maturation of meiotic and postmeiotic germ cells in seminiferous tubes. It is a compound proteinous structure, composed of several types of cell junctions including tight junctions (TJs), adhesion junctions and gap junctions (GJs). Some of the junctional proteins function as structural proteins of BTB and some have regulatory roles. The deletion or functional silencing of genes encoding these proteins may disrupt the BTB, which may cause immunological or other damages to meiotic and postmeiotic cells and ultimately lead to spermatogenic arrest and infertility. In this review, we will summarize the findings on the BTB structure and function from genetically-modified mouse models and discuss the future perspectives.
基金This research was supported by the Natural Science Foundation of Shaanxi (No. 2007C267)National Natural Science Foundation of China (No. 60601026)National 863 Project (No. 2006 AA0224C3)
文摘Objective To study the effect of electromagnetic pulse (EMP) exposure on the permeability of blood-testicle barrier (BTB) in mice. Methods Adult male BALB/c mice were exposed to EMP at 200 kV/m for 200 pulses with 2 seconds interval. The mice were injected with 2% Evans Blue solution through caudal vein at different time points after exposure, and the permeability of BTB was monitored using a fluorescence microscope. The testis sample for the transmission electron microscopy was prepared at 2 h after EMP exposure. The permeability of BTB in mice was observed by using Evans Blue tracer and lanthanum nitrate tracer. Results After exposure, cloudy Evans Blue was found in the testicle convoluted seminiferous tubule of mice. Lanthanum nitrate was observed not only between testicle spermatogonia near seminiferous tubule wall and sertoli cells, but also between sertoli cells and primary spermatocyte or secondary spermatocyte. In contrast, lanthanum nitrate in control group was only found in the testicle sertoli cells between seminiferous tubule and near seminifdrous tubule wall. Conclusion EMP exposure could increase the permeability of BTB in the mice.
基金grants from the National Institutes of Health (R01 HD056034 to CYC)the Natural Science Foundation of China (NSFC)(No. 81601264 to LXLand No. 81730042 to RSG).
文摘During spermatogenesis, developi ng germ cells that lack the cellular ultrastructures of filopodia and lamellipodia gen erally found in migrating cells, such as macrophages and fibroblasts, rely on Sertoli cells to support their transport across the seminiferous epithelium. These in elude the transport of preleptote ne spermatocytes across the blood-testis barrier (BTB), but also the transport of germ cells, in particular developing haploid spermatids, across the seminiferous epithelium, that is to and away from the tubule lumen, depending on the stages of the epithelial cycle. On the other hand, cell junctions at the Sertoli cell-cell and Sertoli-germ cell in terface also un dergo rapid remodeli ng, invo Iving disassembly and reassembly of cell j un ctions, which, in turn, are supported by actin- and microtubule-based cytoskeletal remodeling. Interestingly, the underlying mechanism(s) and the invoIving biomolecule(s) that regulate or support cytoskeletal remodeling remain largely unknown. Herein, we used an in vitro model of primary Sertoli cell cultures that mimicked the Sertoli BTB in vivo overexpressed with the ribosomal protei n S6 (rpS6, the down stream signali ng protein of mammalian target of rapamycin complex 1 [mTORCl]) cloned into the mammalian expression vector pCI-neo, namely, quadruple phosphomimetic and constitutively active mutant of rpS6 (pCI-neo/p-rpS6-MT) versus pCI-neo/rpS6-WT (wild-type) and empty vector (pCI-neo/Ctrl) for studies. These findings provide compelling evidence that the mT0RCl/rpS6 signal pathway exerted its effects to promote Sertoli cell BTB remodeling. This was mediated through changes in the organization of actin- and microtubulebased cytoskeletons, involving changes in the distribution and/or spatial expression of actin- and microtubule-regulatory proteins.
文摘The roles of E-cadherin and α-catenin were evaluated in the development of varicocele-induced infertility. Analysis of the association between the expression of E-cadherinla-catenin and clinical/pathological parameters was performed. Thirty lO-week-old male rats (experimental group) were used for the experiments; the left renal vein was ligated to form a varicocele. The abdomen was incised in 30 rats (control group) and no procedure was performed on 10 rats (baseline group). The weights of the left testis, serum reactive oxygen species (ROS), testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH) and degenerative changes in the seminiferous tubules after 4 and 8 weeks were recorded. The expression of E-cadherin and α-catenin was evaluated by immunohistochemical (IHC) staining and Western blot analysis. The ROS increased in the 8-week experimental group, compared with the baseline and control groups (P〈0.001 for both). Additionally, FSH significantly increased in the 4- and 8-week experimental group compared with the control groups (P= 0.013 and P= 0.032, respectively). The ratio of degenerative changes in the seminiferous tubules of the experimental groups increased. The IHC staining showed that the expression of E-cadherin and a-catenin decreased in the 4- and 8-week experimental groups. Similar to the IHC staining, the experimental group had decreased reactivity on Western blot analysis. The expression of E-cadherin and a-catenin was significantly associated with the ROS and degenerative changes in the seminiferous tubules. The results of this study suggest that damage to the blood-testis barrier (BTB) is associated with varicocele-induced male infertility, and that ROS may cause damage to the BTB.
基金supported by National Natural Science Foundation of China[grand number U21A20399]Liaoning Revitalization Talents Program[grant number XLYC1802059]+1 种基金the Key R&D Program of Liaoning Province[grant number 2019JH2/10300044]Key Laboratory Program of Liaoning Province[grant number 2018225113]。
文摘Objective This study was designed to provide the evidences on the toxicokinetics of microplastics(MPs)and nanoplastics(NPs)in the bodies of mammals.Methods 100 nm,3μm,and 10μm fluorescent polystyrene(PS)beads were administered to mice once by gavage at a dose of 200 mg/kg body weight.The levels and change of fluorescence intensity in samples of blood,subcutaneous fat,perirenal fat,peritesticular fat,cerebrum,cerebellum,testis,and epididymis were measured at 0.5,1,2,and 4 h after administration using an IVIS Spectrum small-animal imaging system.Histological examination,confocal laser scanning,and transmission electron microscope were performed to corroborate the findings.Results After confirming fluorescent dye leaching and impact of pH value,increased levels of fluorescence intensity in blood,all adipose tissues examined,cerebrum,cerebellum,and testis were measured in the 100 nm group,but not in the 3 and 10μm groups except in the cerebellum and testis at 4 h for the 3μm PS beads.The presence of PS beads was further corroborated.Conclusion After a single oral exposure,NPs are absorbed rapidly in the blood,accumulate in adipose tissues,and penetrate the blood-brain/testis barriers.As expected,the toxicokinetics of MPs is significantly size-dependent in mammals.
基金We graciously acknowledge Dr.George F.Gao of Institute of Microbiology,Chinese Academy of Sciences,Beijing,China for the gifts of ZIKV(ZIKA-SMGC-1,GenBank accession number:KX266255)ZIKV antibody FITC-Z6.This work was supported by grants from the National Science and Technology Major Project(Grant No.2018ZX10733403)。
文摘In recent years,various serious diseases caused by Zika virus(ZIKV)have made it impossible to be ignored.Confirmed existence of ZIKV in semen and sexually transmission of ZIKV suggested that it can break the blood–testis barrier(BTB),or Sertoli cell barrier(SCB).However,little is known about the underlying mechanism.In this study,interaction between actin,an important component of the SCB,and ZIKV envelope(E)protein domainⅢ(EDⅢ)was inferred from coimmunoprecipitation(Co-IP)liquid chromatography–tandem mass spectrometry(LC–MS/MS)analysis.Confocal microscopy confirmed the role of actin filaments(F-actin)in ZIKV infection,during which part of the stress fibers,the bundles that constituted by paralleled actin filaments,were disrupted and presented in the cell periphery.Colocalization of E and reorganized actin filaments in the cell periphery of transfected Sertoli cells suggests a participation of ZIKV E protein in ZIKV-induced F-actin rearrangement.Perturbation of F-actin by cytochalasin D(CytoD)or Jasplakinolide(Jas)enhanced the infection of ZIKV.More importantly,the transepithelial electrical resistance(TEER)of an in vitro mouse SCB(mSCB)model declined with the progression of ZIKV infection or overexpression of E protein.Co-IP and confocal microscopy analyses revealed that the interaction between F-actin and tight junction protein ZO-1 was reduced after ZIKV infection or E protein overexpression,highlighting the role of E protein in ZIKV-induced disruption of the BTB.We conclude that the interaction between ZIKV E and F-actin leads to the reorganization of F-actin network,thereby compromising BTB integrity.
文摘目的:探讨机体摄入大量乙醇后,血睾屏障(blood-testis barrier,BTB)能否有效阻止含乙型肝炎病毒(hepatitis B virus,HBV)DNA的质粒转染生精小管生精上皮细胞和影响BTB完整性的因素。方法:取20只Wistar成熟雄性大鼠随机分为实验组(A组)和对照组(B组),应用聚合酶链反应(polymerase chain reaction,PCR)和原位杂交(in situ hybridization,ISH)检测HBVDNA的存在和生精小管的转染情况,应用透射电子显微镜(transmission electron microscopy,TEM)技术检测BTB与生精内环境的超微结构形态学变化。结果:①PCR:A组样本可见特异的HBVDNA阳性条带;②原位杂交:A组发现阳性杂交信号弥散,可被广泛发现于生精上皮基底室和近腔室的生精细胞上;③TEM:A组大鼠睾的生精小管基膜厚薄不均,基膜组织疏松增厚,成波浪式皱褶,可见基膜断裂,精原细胞与支持细胞及生精小管的基膜之间出现较多空泡,生精小管、生精上皮、生精细胞及支持细胞与相邻细胞之间的间隙扩大。结论:BTB的完整性是其起保护功能的重要基础,乙醇可以破坏其完整性,会使全部生精细胞易受HBV的感染。
基金supported by the National Basic Research Program of China (Grant No. 2006CB944000)the National Key Basic Research Program (Grant Nos.G199055901,2006CB504001 and 2007CB947502)+2 种基金the National Natural Science Foundation of China (Grant Nos. 31071018,30618005, 30600311 and 30230190)the CAS Knowledge Innovation Program (Grant Nos.KSCX-2-SW-201 and KSCA2-YWR-55)the Beijing Natural Science Foundation (Grant No.5073032)
文摘Artificial cryptorchidism or local testicular heat treatment can induce reversible oligospermia or azoospermia in monkeys and rats via germ cell apoptosis. Local warming of monkey testes in water at 43°C for 2 consecutive days (30 min per day) decreased the number of sperm in the semen by up to 80% on d 28, and the effect was completely reversed on d 144. Germ cells rely heavily on Sertoli cells for structural and nutritional support. Specialized junctions that play a pivotal role in spermatogenesis occur at sites of Sertoli-Sertoli and Sertoli-germ cell contact in the seminiferous epithelium. We demonstrated that expression of tight junction (TJ)-associated molecules, such as occludin and zonula occludens-1 (ZO-1), were greatly reduced 24–48 h after heat treatment, while the permeability of the blood-testis barrier (BTB) was simultaneously increased, but recovered 10 d later. These results indicate a reversible disruption of the BTB associated with transient inductions of transforming growth factor (TGF) β2 and β3 expression, p38 mitogen-activated protein kinase and extracellular signal-regulated kinase activation, and concomitant loss of occludin and ZO-1. This suggests that expression of TJ-associated molecules and the BTB was reversibly perturbed by mild testicular hyperthermia, and that the heat-induced induction of TGF-β might be involved in downregulating TJ-associated proteins, leading to cell junction reduction. This review discusses the changes in total gene expression patterns after experimental cryptorchidism in adult mouse testes, and the cloning of several novel, physiologically significant spermatogenesis-specific genes.
文摘The Sertoli cell tight junction (T J) is the key component of the blood-testis barrier, where it sequesters developing germ cells undergoing spermatogenesis within the seminiferous tubules. Hormonally regulated claudin-11 is a critical transmembrane protein involved in barrier function and its murine knockout results in infertility. We aimed to assess quantitatively the significance of the contribution of claudin-11 to TJ function, in vitro, using siRNA-mediated gene silencing. We also conducted an analysis of the contribution of occludin, another intrinsic transmembrane protein of the TJ. Silencing of claudin-11 and/or occludin was conducted using siRNA in an immature rat Sertoli cell culture model. Transepithelial electrical resistance was used to assess quantitatively TJ function throughout the culture. Two days after siRNA treatment, cells were fixed for immunocytochemical localization of junction proteins or lyzed for RT-PCR assessment of mRNA expression. Silencing of claudin-11, occludin, or both resulted in significant decreases in TJ function of 55% (P 〈 0.01), 51% (P 〈 0.01), and 62% (P 〈 0.01), respectively. Data were concomitant with significant decreases in mRNA expression and marked reductions in the localization of targeted proteins to the Sertoli cell TJ. We provide quantitative evidence that claudin-11 contributes significantly (P 〈 0.01) to Sertoli cell TJ function in vitro. Interestingly, occludin, which is hormonally regulated but not implicated in infertility until late adulthood, is also a significant (P 〈 0.01) contributor to barrier function. Our data are consistent with in vivo studies that clearly demonstrate a role for these proteins in maintaining normal TJ barrier structure and function.
文摘Ezrin, radixin, moesin and merlin (ERM) proteins are highly homologous actin-binding proteins that share extensive sequence similarity with each other. These proteins tether integral membrane proteins and their cytoplasmic peripheral proteins (e.g., adaptors, nonreceptor protein kinases and phosphatases) to the microfilaments of actin-based cytoskeleton. Thus, these proteins are crucial to confer integrity of the apical membrane domain and its associated junctional complex, namely the tight junction and the adherens junction. Since ectoplasmic specialization (ES) is an F-actin-rich testis-specific anchoring junction-a highly dynamic ultrastructure in the seminiferous epithelium due to continuous transport of germ cells, in particular spermatids, across the epithelium during the epithelial cycle-it is conceivable that ERM proteins are playing an active role in these events. Although these proteins were first reported almost 25 years and have since been extensively studied in multiple epithelia/endothelia, few reports are found in the literature to examine their role in the actin filament bundles at the ES. Studies have shown that ezrin is also a constituent protein of the actin-based tunneling nanotubes (TNT) also known as intercellular bridges, which are transient cytoplasmic tubular ultrastructures that transport signals, molecules and even organelles between adjacent and distant cells in an epithelium to coordinate cell events that occur across an epithelium. Herein, we critically evaluate recent data on ERM in light of recent findings in the field in particular ezrin regarding its role in actin dynamics at the ES in the testis, illustrating additional studies are warranted to examine its physiological significance in spermatogenesis.