Let p be a prime with p≡3(mod 4). In this paper,by using some results relate the representation of integers by primitive binary quadratic forms,we prove that if x,y,z are positive integers satisfying x^p+y^p=z^p, p|x...Let p be a prime with p≡3(mod 4). In this paper,by using some results relate the representation of integers by primitive binary quadratic forms,we prove that if x,y,z are positive integers satisfying x^p+y^p=z^p, p|xyz, x<y<z, then y>p^(6p-2)/2.展开更多
A new priori estimate of lower- solution is made for the following quasilinear elliptic equation : integral(G) {del v . A (x, u, del u) + vB (x, u, del u)} dx = 0, For All v is an element of (W) over circle(p)(1) (G)....A new priori estimate of lower- solution is made for the following quasilinear elliptic equation : integral(G) {del v . A (x, u, del u) + vB (x, u, del u)} dx = 0, For All v is an element of (W) over circle(p)(1) (G). The result presented in this paper enriches and extends the corresponding result of Gilbarg-Trudinger.展开更多
This paper presents new existence results for singular discrete boundary value problems. In particular our nonlinearity may be singular in its dependent variable and is allowed to change sign.
In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters a...In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters are investigated.展开更多
In this paper, we establish the existence of upper and lower solutions for a periodic boundary value problems (PBVP for short) of impulsive differential equations. which guarantees the existence of at least one soluti...In this paper, we establish the existence of upper and lower solutions for a periodic boundary value problems (PBVP for short) of impulsive differential equations. which guarantees the existence of at least one solution for the problem. As an application, these results are applied to PBVP of ODE and some examples are given to illustrate our results.展开更多
In this paper, estimations of the lower solution bounds for the discrete algebraic Lyapunov Equation (the DALE) are addressed. By utilizing linear algebraic techniques, several new lower solution bounds of the DALE ar...In this paper, estimations of the lower solution bounds for the discrete algebraic Lyapunov Equation (the DALE) are addressed. By utilizing linear algebraic techniques, several new lower solution bounds of the DALE are presented. We also propose numerical algorithms to develop sharper solution bounds. The obtained bounds can give a supplement to those appeared in the literature. 展开更多
The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solution...The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solutions. The proof is based on an application of Schauder’s fixed point theorem to a modified problem whose solutions are that of the original one. At the same time, Arzela Ascoli theorem is used to prove that the defined operator N is a compact map.展开更多
This paper is concerned with a class of degenerate and nondegenerate stable diffusion models.By using the upper and lower solution method and Schauder fixed point principle,the author studies the existence of positive...This paper is concerned with a class of degenerate and nondegenerate stable diffusion models.By using the upper and lower solution method and Schauder fixed point principle,the author studies the existence of positive solutions for these stable_diffusion models under some conditions.展开更多
In this article, the existence and uniqueness of positive solution for a class of nonlinear fractional differential equations is proved by constructing the upper and lower control functions of the nonlinear term witho...In this article, the existence and uniqueness of positive solution for a class of nonlinear fractional differential equations is proved by constructing the upper and lower control functions of the nonlinear term without any monotone requirement. Our main method to the problem is the method of upper and lower solutions and Schauder fixed point theorem. Finally, we give an example to illuminate our results.展开更多
In this work, we are concerned with the existence and multiplicity of positive solutions for singular boundary value problems on the half-line. Two problems from epi- demiology and combustion theory set on the positiv...In this work, we are concerned with the existence and multiplicity of positive solutions for singular boundary value problems on the half-line. Two problems from epi- demiology and combustion theory set on the positive half-line are investigated upper and lower solution techniques combined with fixed point index on cones in priate Banach spaces. The results complement recent ones in the literature. We use appropriate Banach spaces. The results complement recent ones in the literature.展开更多
We mainly study the existence of positive solutions for the following third order singular multi-point boundary value problem{x^(3)(t) + f(t, x(t), x′(t)) = 0, 0 〈 t 〈 1,x(0)-∑i=1^m1 αi x(ξi) = 0...We mainly study the existence of positive solutions for the following third order singular multi-point boundary value problem{x^(3)(t) + f(t, x(t), x′(t)) = 0, 0 〈 t 〈 1,x(0)-∑i=1^m1 αi x(ξi) = 0, x′(0)-∑i=1^m2 βi x′(ηi) = 0, x′(1)=0,where 0 ≤ ai≤∑i=1^m1 αi 〈 1, i = 1, 2, ···, m1, 0 〈 ξ1〈 ξ2〈 ··· 〈 ξm1〈 1, 0 ≤βj≤∑i^m2=1βi〈1,J=1,2, ···, m2, 0 〈 η1〈 η2〈 ··· 〈 ηm2〈 1. And we obtain some necessa βi 〈=11, j = 1,ry and sufficient conditions for the existence of C^1[0, 1] and C^2[0, 1] positive solutions by constructing lower and upper solutions and by using the comparison theorem. Our nonlinearity f(t, x, y)may be singular at x, y, t = 0 and/or t = 1.展开更多
The purpose of this paper is to investigate the stability and asymptotic behavior of the time-dependent solutions to a linear parabolic equation with nonlinear boundary condition in relation to their corresponding ste...The purpose of this paper is to investigate the stability and asymptotic behavior of the time-dependent solutions to a linear parabolic equation with nonlinear boundary condition in relation to their corresponding steady state solutions. Then, the above results are extended to a semilinear parabolic equation with nonlinear boundary condition by analyzing the corresponding eigenvalue problem and using the method of upper and lower solutions.展开更多
In this paper, we consider the existence of multiple positive solutions of discrete boundary value problem. The theory of fixed point index is used here to derive the existence theorem.
A class of singularly perturbed boundary value problems for semilinear equations of fourth order with two parameters are considered. Under suitable conditions, using the method of lower and upper solutions, the existe...A class of singularly perturbed boundary value problems for semilinear equations of fourth order with two parameters are considered. Under suitable conditions, using the method of lower and upper solutions, the existence and the asymptotic behavior of the solution to the boundary value problem are studied, In the present paper, the solution to the original singularly perturbed problem with two parameters has only one boundary layer.展开更多
The singularly perturbed initial value problem for a nonlinear singular equation is considered. By using a simple and special method the asymptotic behavior of solution is studied.
This paper investigates the existence of positive solutions for a fourth-order p-Laplacian nonlinear equation. We show that, under suitable conditions, there exists a positive number λ~*such that the above problem ha...This paper investigates the existence of positive solutions for a fourth-order p-Laplacian nonlinear equation. We show that, under suitable conditions, there exists a positive number λ~*such that the above problem has at least two positive solutions for 0 < λ < λ~* , at least one positive solution for λ = λ~* and no solution forλ > λ~* by using the upper and lower solutions method and fixed point theory.展开更多
Using the method of lower and upper solutions, we study the following singular nonlinear three-point boundary value problems: , where K ∈ C[0,1] ,0 α η < 1 and λ is a positive parameter and present the existenc...Using the method of lower and upper solutions, we study the following singular nonlinear three-point boundary value problems: , where K ∈ C[0,1] ,0 α η < 1 and λ is a positive parameter and present the existence, uniqueness, and the dependency on parameters of the positive solutions under various assumptions. Our result improves those in the previous literatures.展开更多
In this paper, we study a class of boundary value problems for conformable fractional differential equations under a new definition. Firstly, by using the monotone iterative technique and the method of coupled upper a...In this paper, we study a class of boundary value problems for conformable fractional differential equations under a new definition. Firstly, by using the monotone iterative technique and the method of coupled upper and lower solution, the sufficient condition for the existence of the boundary value problem is obtained, and the range of the solution is determined. Then the existence and uniqueness of the solution are proved by the proof by contradiction. Finally, a concrete example is given to illustrate the wide applicability of our main results.展开更多
This paper is concerned with the following n-th ordinary differential equation:{u~(n)(t)=f(t,u(t),u~(1)(t),···,u~(n-1) (t)),for t∈(0,1),u~(i) (0)=0,0 ≤i≤n3,au~(n-2)(0)du~(n-1)(0)=0,cu~(n-2)(1)...This paper is concerned with the following n-th ordinary differential equation:{u~(n)(t)=f(t,u(t),u~(1)(t),···,u~(n-1) (t)),for t∈(0,1),u~(i) (0)=0,0 ≤i≤n3,au~(n-2)(0)du~(n-1)(0)=0,cu~(n-2)(1)+du~(n-1)(1)=0,where a,c ∈ R,,≥,such that a~2 + b~2 >0 and c~2+d~2>0,n ≥ 2,f:[0,1] × R → R is a continuous function.Assume that f satisfies one-sided Nagumo condition,the existence theorems of solutions of the boundary value problem for the n-th-order nonlinear differential equations above are established by using Leray-Schauder degree theory,lower and upper solutions,a priori estimate technique.展开更多
In this paper, by the method of upper and lower solutions, we establish the existence of the non-trivial nonnegative periodic solutions for a class of degenerate diffusion system arising from dynamics of biological gr...In this paper, by the method of upper and lower solutions, we establish the existence of the non-trivial nonnegative periodic solutions for a class of degenerate diffusion system arising from dynamics of biological groups.展开更多
文摘Let p be a prime with p≡3(mod 4). In this paper,by using some results relate the representation of integers by primitive binary quadratic forms,we prove that if x,y,z are positive integers satisfying x^p+y^p=z^p, p|xyz, x<y<z, then y>p^(6p-2)/2.
文摘A new priori estimate of lower- solution is made for the following quasilinear elliptic equation : integral(G) {del v . A (x, u, del u) + vB (x, u, del u)} dx = 0, For All v is an element of (W) over circle(p)(1) (G). The result presented in this paper enriches and extends the corresponding result of Gilbarg-Trudinger.
文摘This paper presents new existence results for singular discrete boundary value problems. In particular our nonlinearity may be singular in its dependent variable and is allowed to change sign.
基金The NSF(10871226) of Chinathe NSF(ZR2009AL006) of Shandong Province
文摘In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters are investigated.
文摘In this paper, we establish the existence of upper and lower solutions for a periodic boundary value problems (PBVP for short) of impulsive differential equations. which guarantees the existence of at least one solution for the problem. As an application, these results are applied to PBVP of ODE and some examples are given to illustrate our results.
文摘In this paper, estimations of the lower solution bounds for the discrete algebraic Lyapunov Equation (the DALE) are addressed. By utilizing linear algebraic techniques, several new lower solution bounds of the DALE are presented. We also propose numerical algorithms to develop sharper solution bounds. The obtained bounds can give a supplement to those appeared in the literature.
文摘The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solutions. The proof is based on an application of Schauder’s fixed point theorem to a modified problem whose solutions are that of the original one. At the same time, Arzela Ascoli theorem is used to prove that the defined operator N is a compact map.
文摘This paper is concerned with a class of degenerate and nondegenerate stable diffusion models.By using the upper and lower solution method and Schauder fixed point principle,the author studies the existence of positive solutions for these stable_diffusion models under some conditions.
基金supported by Science and Technology Project of Chongqing Municipal Education Committee (kJ110501) of ChinaNatural Science Foundation Project of CQ CSTC (cstc2012jjA20016) of ChinaNational Natural Science Foundation of China (11101298)
文摘In this article, the existence and uniqueness of positive solution for a class of nonlinear fractional differential equations is proved by constructing the upper and lower control functions of the nonlinear term without any monotone requirement. Our main method to the problem is the method of upper and lower solutions and Schauder fixed point theorem. Finally, we give an example to illuminate our results.
文摘In this work, we are concerned with the existence and multiplicity of positive solutions for singular boundary value problems on the half-line. Two problems from epi- demiology and combustion theory set on the positive half-line are investigated upper and lower solution techniques combined with fixed point index on cones in priate Banach spaces. The results complement recent ones in the literature. We use appropriate Banach spaces. The results complement recent ones in the literature.
基金supported by the National Science Foundation of Shandong Province(ZR2009AM004)
文摘We mainly study the existence of positive solutions for the following third order singular multi-point boundary value problem{x^(3)(t) + f(t, x(t), x′(t)) = 0, 0 〈 t 〈 1,x(0)-∑i=1^m1 αi x(ξi) = 0, x′(0)-∑i=1^m2 βi x′(ηi) = 0, x′(1)=0,where 0 ≤ ai≤∑i=1^m1 αi 〈 1, i = 1, 2, ···, m1, 0 〈 ξ1〈 ξ2〈 ··· 〈 ξm1〈 1, 0 ≤βj≤∑i^m2=1βi〈1,J=1,2, ···, m2, 0 〈 η1〈 η2〈 ··· 〈 ηm2〈 1. And we obtain some necessa βi 〈=11, j = 1,ry and sufficient conditions for the existence of C^1[0, 1] and C^2[0, 1] positive solutions by constructing lower and upper solutions and by using the comparison theorem. Our nonlinearity f(t, x, y)may be singular at x, y, t = 0 and/or t = 1.
基金The project is supported by National Natural Science Foundation of China (10071026)
文摘The purpose of this paper is to investigate the stability and asymptotic behavior of the time-dependent solutions to a linear parabolic equation with nonlinear boundary condition in relation to their corresponding steady state solutions. Then, the above results are extended to a semilinear parabolic equation with nonlinear boundary condition by analyzing the corresponding eigenvalue problem and using the method of upper and lower solutions.
文摘In this paper, we consider the existence of multiple positive solutions of discrete boundary value problem. The theory of fixed point index is used here to derive the existence theorem.
基金supported by the National Natural Science Foundation of China (Nos.40676016 and 40876010)the Knowledge Innovation Program of Chinese Academy of Sciences (No.KZCX2-YW-Q03-08)the LASG State Key Laboratory Special Fund,and the E-Institute of Shanghai Municipal Education Commission (No.E03004)
文摘A class of singularly perturbed boundary value problems for semilinear equations of fourth order with two parameters are considered. Under suitable conditions, using the method of lower and upper solutions, the existence and the asymptotic behavior of the solution to the boundary value problem are studied, In the present paper, the solution to the original singularly perturbed problem with two parameters has only one boundary layer.
基金Supported by Important Project of the National Natural Science Foundation of China( 90 2 1 1 0 0 4 ) andby the"Hundred Talents Project" of Chinese Academy of Science
文摘The singularly perturbed initial value problem for a nonlinear singular equation is considered. By using a simple and special method the asymptotic behavior of solution is studied.
文摘This paper investigates the existence of positive solutions for a fourth-order p-Laplacian nonlinear equation. We show that, under suitable conditions, there exists a positive number λ~*such that the above problem has at least two positive solutions for 0 < λ < λ~* , at least one positive solution for λ = λ~* and no solution forλ > λ~* by using the upper and lower solutions method and fixed point theory.
文摘Using the method of lower and upper solutions, we study the following singular nonlinear three-point boundary value problems: , where K ∈ C[0,1] ,0 α η < 1 and λ is a positive parameter and present the existence, uniqueness, and the dependency on parameters of the positive solutions under various assumptions. Our result improves those in the previous literatures.
文摘In this paper, we study a class of boundary value problems for conformable fractional differential equations under a new definition. Firstly, by using the monotone iterative technique and the method of coupled upper and lower solution, the sufficient condition for the existence of the boundary value problem is obtained, and the range of the solution is determined. Then the existence and uniqueness of the solution are proved by the proof by contradiction. Finally, a concrete example is given to illustrate the wide applicability of our main results.
文摘This paper is concerned with the following n-th ordinary differential equation:{u~(n)(t)=f(t,u(t),u~(1)(t),···,u~(n-1) (t)),for t∈(0,1),u~(i) (0)=0,0 ≤i≤n3,au~(n-2)(0)du~(n-1)(0)=0,cu~(n-2)(1)+du~(n-1)(1)=0,where a,c ∈ R,,≥,such that a~2 + b~2 >0 and c~2+d~2>0,n ≥ 2,f:[0,1] × R → R is a continuous function.Assume that f satisfies one-sided Nagumo condition,the existence theorems of solutions of the boundary value problem for the n-th-order nonlinear differential equations above are established by using Leray-Schauder degree theory,lower and upper solutions,a priori estimate technique.
文摘In this paper, by the method of upper and lower solutions, we establish the existence of the non-trivial nonnegative periodic solutions for a class of degenerate diffusion system arising from dynamics of biological groups.