High performance organic light-emitting devices (OLEDs) have been investigated by using fluorescent bis (2-methyl-8-quinolinolato)(para-phenylphenolato)aluminum(BAlq) as an emissive layer on the performance of...High performance organic light-emitting devices (OLEDs) have been investigated by using fluorescent bis (2-methyl-8-quinolinolato)(para-phenylphenolato)aluminum(BAlq) as an emissive layer on the performance of multicolor devices consisting of N, N'-bis-(1-naphthyl)-N,N'diphenyl- 1,1'-biphenyl-4,4'- diamine (NPB) as hole transport layer. The results show that the performance of heterostructure blue light-emitting device composed of 8-hydroxyquinoline aluminum (Alq3) as an electron transport layer has been dramatically enhanced. In the case of high performance heterostructure devices, the electroluminescent spectra has been perceived to vary strongly with the thickness of the organic layers due to the different recombination region, which indicates that various color devices composed of identical components could be implemented by changing the film thickness of different functional layers.展开更多
White organic light-emitting diodes(WOLEDs)have several desirable features,but their commercialization is hindered by the poor stability of blue light emitters and high production costs due to complicated device struc...White organic light-emitting diodes(WOLEDs)have several desirable features,but their commercialization is hindered by the poor stability of blue light emitters and high production costs due to complicated device structures.Herein,we investigate a standard blue emitting hole transporting material(HTM)N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine(NPB)and its exciplex emission upon combining with a suitable electron transporting material(ETM),3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole(TAZ).Blue and yellow OLEDs with simple device structures are developed by using a blend layer,NPB:TAZ,as a blue emitter as well as a host for yellow phosphorescent dopant iridium(III)bis(4-phenylthieno[3,2-c]pyridinato-N,C2')acetylacetonate(PO-01).Strategic device design then exploits the ambipolar charge transport properties of tetracene as a spacer layer to connect these blue and yellow emitting units.The tetracene-linked device demonstrates more promising results compared to those using a conventional charge generation layer(CGL).Judicious choice of the spacer prevents exciton difusion from the blue emitter unit,yet facilitates charge carrier transport to the yellow emitter unit to enable additional exciplex formation.This complementary behavior of the spacer improves the blue emission properties concomitantly yielding reasonable yellow emission.The overall white light emission properties are enhanced,achieving CIE coordinates(0.36,0.39)and color temperature(4643 K)similar to daylight.Employing intermolecular exciplex emission in OLEDs simplifes the device architecture via its dual functionality as a host and as an emitter.展开更多
采用两种经典传统荧光材料作为发光层,制备了非掺杂白色有机电致发光器件(WOLEDs).在器件中两层苝(perylene)以薄层的方式分别置于双极性主体材料CBP(4,4’-di(N-carbazole)biphyenyl)两侧作为蓝光发射体,一层超薄的红荧烯(rubrene)插入...采用两种经典传统荧光材料作为发光层,制备了非掺杂白色有机电致发光器件(WOLEDs).在器件中两层苝(perylene)以薄层的方式分别置于双极性主体材料CBP(4,4’-di(N-carbazole)biphyenyl)两侧作为蓝光发射体,一层超薄的红荧烯(rubrene)插入CBP中作为橙光发射体.通过改变rubrene在CBP中的插入位置获得了高效率白色荧光器件,最高电流效率为6.6 cd/A(外量子效率为2.6%),最高亮度为18480 cd/m^(2),且其中一种器件在200 mA/cm^(2)的高电流密度下,CIE(commission internationale de l’eclairage)色坐标可达理想白光平衡点(0.33,0.33).展开更多
We report the synthesis and photophysical characterization of four 9,10-disubstituted dipheny-lanthracenes with specific modifications of the model backbone which involve both the 9,10 para substituents at the phenyl ...We report the synthesis and photophysical characterization of four 9,10-disubstituted dipheny-lanthracenes with specific modifications of the model backbone which involve both the 9,10 para substituents at the phenyl rings and the substitution with carbon-carbon triple bonds. The effects of such modifications on the photoluminescence and electroluminescence properties have been investigated on the basis of the diphenylanthracene molecular characteristics and in view of application to light-emitting devices. We have found that the substitution with the carbon-carbon triple bonds at the two 9,10-phenyls noticeably alters the electronic states of the reference molecule, also introducing a certain degree of sensitivity to the phenyl substituents, which improves the tunability of the optical emission. Differently, the 9,10 para substituents produce minor changes in the single-molecule properties, due to the lack of electronic conjugation across the 9,10-phenyls. However, even a single nitro substituent in the phenyl para position produces the formation of excimers, which appreciably reduces the optical quantum efficiency. These properties are maintained in solid-state blends and simple spin-coated bilayer electroluminescent devices have been fabricated.展开更多
基金This was work supported in part by the National Nature Science Foundation oChina under Grant No. 60425101.
文摘High performance organic light-emitting devices (OLEDs) have been investigated by using fluorescent bis (2-methyl-8-quinolinolato)(para-phenylphenolato)aluminum(BAlq) as an emissive layer on the performance of multicolor devices consisting of N, N'-bis-(1-naphthyl)-N,N'diphenyl- 1,1'-biphenyl-4,4'- diamine (NPB) as hole transport layer. The results show that the performance of heterostructure blue light-emitting device composed of 8-hydroxyquinoline aluminum (Alq3) as an electron transport layer has been dramatically enhanced. In the case of high performance heterostructure devices, the electroluminescent spectra has been perceived to vary strongly with the thickness of the organic layers due to the different recombination region, which indicates that various color devices composed of identical components could be implemented by changing the film thickness of different functional layers.
基金support by DST-SERB,Govt.of India(CRG/2020/003699)CKV and KNNU acknowledge support from DST-AISRF program of the Department of Science and Technology,Government of India(DST/INT/AUS/P-74/2017)support from Council of Scientifc and Industrial Research(CSIR),Government of India for the award of a research fellowship.AKS acknowledges support from DST-INSPIRE for the award of a research fellowship.
文摘White organic light-emitting diodes(WOLEDs)have several desirable features,but their commercialization is hindered by the poor stability of blue light emitters and high production costs due to complicated device structures.Herein,we investigate a standard blue emitting hole transporting material(HTM)N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine(NPB)and its exciplex emission upon combining with a suitable electron transporting material(ETM),3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole(TAZ).Blue and yellow OLEDs with simple device structures are developed by using a blend layer,NPB:TAZ,as a blue emitter as well as a host for yellow phosphorescent dopant iridium(III)bis(4-phenylthieno[3,2-c]pyridinato-N,C2')acetylacetonate(PO-01).Strategic device design then exploits the ambipolar charge transport properties of tetracene as a spacer layer to connect these blue and yellow emitting units.The tetracene-linked device demonstrates more promising results compared to those using a conventional charge generation layer(CGL).Judicious choice of the spacer prevents exciton difusion from the blue emitter unit,yet facilitates charge carrier transport to the yellow emitter unit to enable additional exciplex formation.This complementary behavior of the spacer improves the blue emission properties concomitantly yielding reasonable yellow emission.The overall white light emission properties are enhanced,achieving CIE coordinates(0.36,0.39)and color temperature(4643 K)similar to daylight.Employing intermolecular exciplex emission in OLEDs simplifes the device architecture via its dual functionality as a host and as an emitter.
文摘采用两种经典传统荧光材料作为发光层,制备了非掺杂白色有机电致发光器件(WOLEDs).在器件中两层苝(perylene)以薄层的方式分别置于双极性主体材料CBP(4,4’-di(N-carbazole)biphyenyl)两侧作为蓝光发射体,一层超薄的红荧烯(rubrene)插入CBP中作为橙光发射体.通过改变rubrene在CBP中的插入位置获得了高效率白色荧光器件,最高电流效率为6.6 cd/A(外量子效率为2.6%),最高亮度为18480 cd/m^(2),且其中一种器件在200 mA/cm^(2)的高电流密度下,CIE(commission internationale de l’eclairage)色坐标可达理想白光平衡点(0.33,0.33).
文摘We report the synthesis and photophysical characterization of four 9,10-disubstituted dipheny-lanthracenes with specific modifications of the model backbone which involve both the 9,10 para substituents at the phenyl rings and the substitution with carbon-carbon triple bonds. The effects of such modifications on the photoluminescence and electroluminescence properties have been investigated on the basis of the diphenylanthracene molecular characteristics and in view of application to light-emitting devices. We have found that the substitution with the carbon-carbon triple bonds at the two 9,10-phenyls noticeably alters the electronic states of the reference molecule, also introducing a certain degree of sensitivity to the phenyl substituents, which improves the tunability of the optical emission. Differently, the 9,10 para substituents produce minor changes in the single-molecule properties, due to the lack of electronic conjugation across the 9,10-phenyls. However, even a single nitro substituent in the phenyl para position produces the formation of excimers, which appreciably reduces the optical quantum efficiency. These properties are maintained in solid-state blends and simple spin-coated bilayer electroluminescent devices have been fabricated.