Sprouts are ready-to-eat and are recognized worldwide as functional components of the human diet.Recent advances in innovative agricultural techniques could enable an increase in the production of healthy food.The use...Sprouts are ready-to-eat and are recognized worldwide as functional components of the human diet.Recent advances in innovative agricultural techniques could enable an increase in the production of healthy food.The use of light-emitting diode(LED)in indoor agricultural production could alter the biological feedback loop,increasing the functional benefits of plant foods such as wheat and lentil sprouts and promoting the bioavailability of nutrients.The effects of white(W),red(R),and blue(B)light were investigated on the growth parameters and nutritional value of wheat and lentil sprouts.In the laboratory,seeds were sown under three different LED treat-ments:white,red,and blue light,while normal incandescent light served as a control.Percentage seed germina-tion improved by 18.34%and 12.67%for wheat and 18.34%and 12.67%for lentil sprouts under LED treatments R and B,respectively.An increase in total soluble protein and sugar by 33.4%and 9.23%in wheat and by 31.5%and 5.87%in lentils was observed under the R LED treatment.Vitamin C concentrations in wheat and lentils were significantly increased by R LED compared to all other treatments.Other parameters,including potassium and sodium concentrations,were significantly increased under red and blue light compared to the control;white light,on the other hand,significantly decreased all these parameters.According to the experimental data,red and blue LED light could be beneficial in the production of functional wheat and lentil sprouts with high nutrient concentrations.展开更多
针对强日光环境下OCC(Optical Camera Communication)系统接收端解码困难的问题,提出了基于分段式线性灰度变换的Gradient-Harris解码算法。首先搭建一套OCC实验系统,接收端相机采集原始图像,利用标准相关系数匹配方法提取目标LED阵列...针对强日光环境下OCC(Optical Camera Communication)系统接收端解码困难的问题,提出了基于分段式线性灰度变换的Gradient-Harris解码算法。首先搭建一套OCC实验系统,接收端相机采集原始图像,利用标准相关系数匹配方法提取目标LED阵列区域。其次通过分段式线性灰度变换对目标LED阵列区域进行图像增强,利用Gradient-Harris解码算法进行目标LED阵列的形状提取和状态识别。实验结果表明,应用基于分段式线性灰度变换的Gradient-Harris解码算法,强日光环境下OCC实验系统的平均解码速率为128.08 bit/s,平均误码率为4.38×10^(-4),最大通信距离为55 m。展开更多
基金Supported by Researchers Supporting Project Number(RSP2024R410)King Saud University,Riyadh,Saudi Arabia.
文摘Sprouts are ready-to-eat and are recognized worldwide as functional components of the human diet.Recent advances in innovative agricultural techniques could enable an increase in the production of healthy food.The use of light-emitting diode(LED)in indoor agricultural production could alter the biological feedback loop,increasing the functional benefits of plant foods such as wheat and lentil sprouts and promoting the bioavailability of nutrients.The effects of white(W),red(R),and blue(B)light were investigated on the growth parameters and nutritional value of wheat and lentil sprouts.In the laboratory,seeds were sown under three different LED treat-ments:white,red,and blue light,while normal incandescent light served as a control.Percentage seed germina-tion improved by 18.34%and 12.67%for wheat and 18.34%and 12.67%for lentil sprouts under LED treatments R and B,respectively.An increase in total soluble protein and sugar by 33.4%and 9.23%in wheat and by 31.5%and 5.87%in lentils was observed under the R LED treatment.Vitamin C concentrations in wheat and lentils were significantly increased by R LED compared to all other treatments.Other parameters,including potassium and sodium concentrations,were significantly increased under red and blue light compared to the control;white light,on the other hand,significantly decreased all these parameters.According to the experimental data,red and blue LED light could be beneficial in the production of functional wheat and lentil sprouts with high nutrient concentrations.
文摘针对强日光环境下OCC(Optical Camera Communication)系统接收端解码困难的问题,提出了基于分段式线性灰度变换的Gradient-Harris解码算法。首先搭建一套OCC实验系统,接收端相机采集原始图像,利用标准相关系数匹配方法提取目标LED阵列区域。其次通过分段式线性灰度变换对目标LED阵列区域进行图像增强,利用Gradient-Harris解码算法进行目标LED阵列的形状提取和状态识别。实验结果表明,应用基于分段式线性灰度变换的Gradient-Harris解码算法,强日光环境下OCC实验系统的平均解码速率为128.08 bit/s,平均误码率为4.38×10^(-4),最大通信距离为55 m。