在局部遮荫下,针对传统最大功率跟踪MPPT(maximum power point tracking)算法不能跳出局部最优找到全局最大功率,及传统蝴蝶优化算法BOA(butterfly optimization algorithm)存在搜索震荡大和收敛慢等问题,提出一种新型的MPPT控制算法。...在局部遮荫下,针对传统最大功率跟踪MPPT(maximum power point tracking)算法不能跳出局部最优找到全局最大功率,及传统蝴蝶优化算法BOA(butterfly optimization algorithm)存在搜索震荡大和收敛慢等问题,提出一种新型的MPPT控制算法。该算法在传统蝴蝶算法上加入收敛因子,来加快全局搜索速度;引入自适应权重系数,来提高蝴蝶优化算法在局部搜索的搜索速度及追踪精度等性能。通过仿真,对比混合算法(INBOA)与BOA、粒子群优化PSO(particle swarm optimization)算法、灰狼优化算法GWO(gray wolf optimization)的函数收敛曲线,验证所提算法具有收敛速度快、搜索精度高的优点;对比INBOA、BOA、PSO、GWO的MPPT算法在静态与动态环境下的性能指标可知,INBOA的MPPT算法具有更高追踪效率、更快收敛速度以及更小的搜索震荡。从而进一步验证混合算法的优越性。展开更多
文摘在局部遮荫下,针对传统最大功率跟踪MPPT(maximum power point tracking)算法不能跳出局部最优找到全局最大功率,及传统蝴蝶优化算法BOA(butterfly optimization algorithm)存在搜索震荡大和收敛慢等问题,提出一种新型的MPPT控制算法。该算法在传统蝴蝶算法上加入收敛因子,来加快全局搜索速度;引入自适应权重系数,来提高蝴蝶优化算法在局部搜索的搜索速度及追踪精度等性能。通过仿真,对比混合算法(INBOA)与BOA、粒子群优化PSO(particle swarm optimization)算法、灰狼优化算法GWO(gray wolf optimization)的函数收敛曲线,验证所提算法具有收敛速度快、搜索精度高的优点;对比INBOA、BOA、PSO、GWO的MPPT算法在静态与动态环境下的性能指标可知,INBOA的MPPT算法具有更高追踪效率、更快收敛速度以及更小的搜索震荡。从而进一步验证混合算法的优越性。