It is generally accepted that anomalous slip(AS) takes place by hexagonal dislocation networks(HDNs) in body centered cubic(BCC) metals,but the role of the HDN formation process in AS has rarely been investigated so f...It is generally accepted that anomalous slip(AS) takes place by hexagonal dislocation networks(HDNs) in body centered cubic(BCC) metals,but the role of the HDN formation process in AS has rarely been investigated so far.In this work,the critical yield conditions of the HDNs and isolated dislocations were first calculated,respectively,by molecular statics simulations in two BCC metals.Based on these data,a novel mechanism,entitled as the "conjugated dislocation sources"(CDS),to analyze the formation of the HDNs was proposed for the first time and then incorporated into the criterion of the occurrence of AS.Our prediction is in agreement with experimental observations.Contrary to previous study,it has been revealed that the multiplication of isolated screw dislocations involved in AS has to be considered for correctly understanding the AS origin.展开更多
Shell-infill structures comprise an exterior solid shell and an interior lattice infill,whose closed features yield superior comprehensive mechanical performance and light weight.Additive manufacturing(AM)can ensure t...Shell-infill structures comprise an exterior solid shell and an interior lattice infill,whose closed features yield superior comprehensive mechanical performance and light weight.Additive manufacturing(AM)can ensure the fabrica-tion of complex structures.Although the mechanical behaviors of lattice structures have been extensively studied,the corresponding mechanical performances of integrated-manufactured shell structures with lattice infills should be systematically investigated due to the coupling effect of the exterior shell and lattice infill.This study investigated the mechanical properties and energy absorption of AlSi10Mg shell structures with a body-centered cubic lattice infill fabricated by AM.Quasi-static compressive experiments and corresponding finite element analysis were conducted to investigate the mechanical behavior.In addition,two different finite element modeling methods were compared to determine the appropriate modeling strategy in terms of deformation behavior.A study of different parameters,including lattice diameters and shell thicknesses,was conducted to identify their effect on mechanical performance.The results demonstrate the mechanical advantages of shell-infill structures,in which the exterior shell strengthens the lattice infill by up to 2.3 times in terms of the effective Young’s modulus.Increasing the infill strut diameter can improve the specific energy absorption by up to 1.6 times.展开更多
基金financially supported by the Youth Innovation Promotion Association CAS (Grant No.2021192)National Natural Science Foundation of China (NSFC) (Grant Nos.51871223, 52130002 and 51790482)the KC Wong Education Foundation (GJTD-2020-09)。
文摘It is generally accepted that anomalous slip(AS) takes place by hexagonal dislocation networks(HDNs) in body centered cubic(BCC) metals,but the role of the HDN formation process in AS has rarely been investigated so far.In this work,the critical yield conditions of the HDNs and isolated dislocations were first calculated,respectively,by molecular statics simulations in two BCC metals.Based on these data,a novel mechanism,entitled as the "conjugated dislocation sources"(CDS),to analyze the formation of the HDNs was proposed for the first time and then incorporated into the criterion of the occurrence of AS.Our prediction is in agreement with experimental observations.Contrary to previous study,it has been revealed that the multiplication of isolated screw dislocations involved in AS has to be considered for correctly understanding the AS origin.
基金Supported by National Natural Science Foundation of China(Grant No.51805032).
文摘Shell-infill structures comprise an exterior solid shell and an interior lattice infill,whose closed features yield superior comprehensive mechanical performance and light weight.Additive manufacturing(AM)can ensure the fabrica-tion of complex structures.Although the mechanical behaviors of lattice structures have been extensively studied,the corresponding mechanical performances of integrated-manufactured shell structures with lattice infills should be systematically investigated due to the coupling effect of the exterior shell and lattice infill.This study investigated the mechanical properties and energy absorption of AlSi10Mg shell structures with a body-centered cubic lattice infill fabricated by AM.Quasi-static compressive experiments and corresponding finite element analysis were conducted to investigate the mechanical behavior.In addition,two different finite element modeling methods were compared to determine the appropriate modeling strategy in terms of deformation behavior.A study of different parameters,including lattice diameters and shell thicknesses,was conducted to identify their effect on mechanical performance.The results demonstrate the mechanical advantages of shell-infill structures,in which the exterior shell strengthens the lattice infill by up to 2.3 times in terms of the effective Young’s modulus.Increasing the infill strut diameter can improve the specific energy absorption by up to 1.6 times.