Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expre...Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway.展开更多
In order to obtain the optimal parameters of anchor bolt supporting system for large-span and jointed rock mass in Kaiyang Phosphor Mine, it is expensive and unavailable with the method of in-situ experiments. This pa...In order to obtain the optimal parameters of anchor bolt supporting system for large-span and jointed rock mass in Kaiyang Phosphor Mine, it is expensive and unavailable with the method of in-situ experiments. This paper describes a numerical modeling with discrete element method for the supporting effects of different type of anchor bolts. The anchor bolts with variant length of 0.5m, 0.8m, 1.0m, diameter of 10mm, 15mm, 20mm, setting spacing of 3.0m, 2.5m, 2.0m, and setting angle of 10°, 20°, 30°, are simulated respectively. The results show that there exist optimal parameters of anchor bolt support for large-span and jointed rock mass. For the bolt support of the concerning, the optimal length is 2.53.5m, the diameter is 2535mm, the spacing is 0.50.6m, and the setting angle is 105°.展开更多
Anchor bolts are commonly used throughout underground mining and tunnelling operations to improve roof stability.However,premature failures of anchor bolts are significant safety risks in underground excavations aroun...Anchor bolts are commonly used throughout underground mining and tunnelling operations to improve roof stability.However,premature failures of anchor bolts are significant safety risks in underground excavations around the world due to susceptible bolt materials,a moist and corrosive environment and tensile stress.In this paper,laboratory experiments and hydrogeochemical models were combined to investigate anchor bolt corrosion and failure associated with aqueous environments in underground coal mines.Experimental data and collated mine water chemistry data were used to simulate bolt corrosion reactions with groundwater and rock materials with the PHREEQC code.A series of models quantified reactions involving iron and carbon under aerobic and anaerobic conditions in comparison with ion,pH and pE trends in experimental data.The models showed that corrosion processes are inhibited by some natural environmental factors,because dissolved oxygen would cause more iron from the bolts to oxidize into solution.These interdisciplinary insights into corrosion failure of underground anchor bolts confirm that environmental factors are important contributors to stress corrosion cracking.展开更多
The roof of a roadway under goal with ultra-close separation consists of thin rock strata and rocks caving in upper goal. Influenced by the mining of the upper coal seam, the roof is loose and broken, and its integ- r...The roof of a roadway under goal with ultra-close separation consists of thin rock strata and rocks caving in upper goal. Influenced by the mining of the upper coal seam, the roof is loose and broken, and its integ- rity is poor. Resin anchored bolts cannot provide an effective anchoring force in such roof conditions. By conducting free expansion tests and field pull-out tests on a hydraulic expansion bolt, this study has ana- lyzed the influencing factors and laws of radial expansion and anchoring force changes in the rod body. This has revealed the anchoring mechanism of such bolts, and has obtained reasonable water injection pressures and suitable drilling diameters (which are 20-25 MPa and 32-35 mm respectively) for the hydraulic expansion bolt (cR28 mm) used in these tests. Based on pull-out tests at different interlayer spacing, the applicability of hydraulic expansion bolts had been verified for controlling the roof of road- ways under goal with ultra-close distance. Combined with the deformation and failure characteristics of the test roadway roof, this paper proposes a united roof-control technology based on the use of hydraulic expansion bolts and advancing intubation for the roof. Engineering practice indicated that the roof of the test roadway did not generate leaking and caving phenomenon, and the amount of roof deformation was controlled to within 150 mm. Maintenance of the roadway roof has been improved significantly, which ensures safe mining in coal seams with ultra-close separation.展开更多
The designing method and the supporting mechanism of both bolt and small cable anchor for full seam roadway in the weaker thick coal seam are systematically analyzed, and the construction technology and the supporting...The designing method and the supporting mechanism of both bolt and small cable anchor for full seam roadway in the weaker thick coal seam are systematically analyzed, and the construction technology and the supporting results are briefly summarized.展开更多
The mixed model of improved exponential and power function and unequal interval gray GM(1,1)model have poor accuracy in predicting the maximum pull-out load of anchor bolts.An optimal combination model was derived usi...The mixed model of improved exponential and power function and unequal interval gray GM(1,1)model have poor accuracy in predicting the maximum pull-out load of anchor bolts.An optimal combination model was derived using the optimally weighted combination theory and the minimum sum of logarithmic squared errors as the objective function.Two typical anchor bolt pull-out engineering cases were selected to compare the performance of the proposed model with those of existing ones.Results showed that the optimal combination model was suitable not only for the slow P-s curve but also for the steep P-s curve.Its accuracy and stable reliability,as well as its prediction capability classification,were better than those of the other prediction models.Therefore,the optimal combination model is an effective processing method for predicting the maximum pull-out load of anchor bolts according to measured data.展开更多
The purpose of this paper is to reveal the stress distribution characteristic along the full length anchor bolt. Based on the mechanic model set up, the author calculated the anchor mechanism of the full length resin ...The purpose of this paper is to reveal the stress distribution characteristic along the full length anchor bolt. Based on the mechanic model set up, the author calculated the anchor mechanism of the full length resin rock bolt. The stress distribution characteristic is different according to different type of surrounding rock. The conclusion is important to optimize the roadway bolt support design.展开更多
To solve the deficiency of steel anchor blot in corrosion resistance and flaw of GFRP anchor bolt in fracture resistance, our research group develops a new composite anchor bolt made of steel strands wrapped up with c...To solve the deficiency of steel anchor blot in corrosion resistance and flaw of GFRP anchor bolt in fracture resistance, our research group develops a new composite anchor bolt made of steel strands wrapped up with compound fiber resin. To improve the cohesion performance of the composite anchor bolt, pull-out tests of different composite anchor bolts with different groove intervals and depths were made and analyzed. The results show that the pulling resistance of the composite anchor bolt increases with the increase of groove interval and depth, but groove interval and depth have optimal value. Based on elastic mechanics, the cohesion between anchor bolts and anchor bodies and its distribution characteristics caused by axial tension are analyzed and cohesion formula is obtained. By contrast, the experimental result is consistent with the theoretical analysis. Therefore, the surficial change of anchor colts could influence the performance of the composite anchor bolt. The cohesion force and anchorage performance can be improved by changing the surface of anchor bolts. Research results show that the new composite anchor bolt is high-performance material in the civil engineering.展开更多
A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' w...A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' was studied for anchor bolts and cables. The rail roadway of the 2-501 working face in the Liyazhuang Mine of the Huozhou coal area located in Shanxi province was used for field trials. The geological conditions used there were used during the design phase. The new ''highly resistant, yielding'' support system has a core of high strength, yielding bolts and anchor cables. The field tests show that this support system adapts well to the deformation and pressure in the deep broken soft rock. The support system effectively controls damage to the roadway and ensures the long term stability of the wall rock and safe production in the coal mine. This provides a remarkable economic and social benefit and has broad prospects for fur- ther application.展开更多
In order to avoid the deep-well oil shale roadway being deformed, damaged, or difficult to maintain after excavating and supporting in Haishiwan coal mine, this paper has analyzed the characteristics of the deformed r...In order to avoid the deep-well oil shale roadway being deformed, damaged, or difficult to maintain after excavating and supporting in Haishiwan coal mine, this paper has analyzed the characteristics of the deformed roadway and revealed its failure mechanism by taking comprehensively the methods of field geological investigation, displacement monitoring of surrounding rock, rock properties and hydration properties experiments and field application tests. Based on this work, the high-resistance controlled yielding supporting principle is proposed, which is: to "resist" by high pre-tightening force and high stiff- ness in the early stage, to "yield" by making use of the controlled deformation of a yielding tube in the middle stage, and to "fix" by applying total-section Gunite in the later stage. A high-resistance controlled yielding supporting technique of "high pre-tightening force yielding anchor bolt + small-bore pre-tight- ening force anchor cable + rebar ladder beam + rhombic metal mesh + lagging gunite" has been estab- lished, and industrial on site testing implemented. The practical results show that the high-resistance controlled yielding supporting technique can effectively control the large deformation and long-time rheology of deep-well oil shale roadways and can provide beneficial references for the maintenance of other con-generic roadways.Deep-well Oil shale展开更多
Combined with fiber Bragg grating(FBG)sensing technology,four glass fiber reinforced polymer(GFRP)anti-floating anchors and four steel anti-floating anchors were tested for on-site destructive failure to investigate t...Combined with fiber Bragg grating(FBG)sensing technology,four glass fiber reinforced polymer(GFRP)anti-floating anchors and four steel anti-floating anchors were tested for on-site destructive failure to investigate the anchoring performance and the bonding characteristics between GFRP anti-floating anchor and concrete floor.The test results show that bending GFRP anchor will be broken at the common boundary between vertical anchorage section and bending section during the pullout process,and the spring-back load provided by the rupture contributes to a decrease of bearing capacity and an inflection point on the load-slip curve.The loaddisplacement curve of the straight anchor GFRP anti-floating anchor is smoother and has better predictability than the same type of steel anchor.Additionally,different forms of GFRP anti-floating bolt have different bondslip constitutive relations.By introducing the sliding-slip correction factor of bending bolt,constitutive models describing the rising-section of sliding-slip relation of bending and straight-anchored GFRP anti-floating bolt are established respectively.The model can fit the test results rightly.展开更多
基金support by the National Natural Science Foundation of China (No.51174195)the Fundamental Research Funds for the Central Universities of China (No.2010QNA31)
文摘Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway.
文摘In order to obtain the optimal parameters of anchor bolt supporting system for large-span and jointed rock mass in Kaiyang Phosphor Mine, it is expensive and unavailable with the method of in-situ experiments. This paper describes a numerical modeling with discrete element method for the supporting effects of different type of anchor bolts. The anchor bolts with variant length of 0.5m, 0.8m, 1.0m, diameter of 10mm, 15mm, 20mm, setting spacing of 3.0m, 2.5m, 2.0m, and setting angle of 10°, 20°, 30°, are simulated respectively. The results show that there exist optimal parameters of anchor bolt support for large-span and jointed rock mass. For the bolt support of the concerning, the optimal length is 2.53.5m, the diameter is 2535mm, the spacing is 0.50.6m, and the setting angle is 105°.
基金Project(140100153)supported by Australian Research Council Linkage Grant。
文摘Anchor bolts are commonly used throughout underground mining and tunnelling operations to improve roof stability.However,premature failures of anchor bolts are significant safety risks in underground excavations around the world due to susceptible bolt materials,a moist and corrosive environment and tensile stress.In this paper,laboratory experiments and hydrogeochemical models were combined to investigate anchor bolt corrosion and failure associated with aqueous environments in underground coal mines.Experimental data and collated mine water chemistry data were used to simulate bolt corrosion reactions with groundwater and rock materials with the PHREEQC code.A series of models quantified reactions involving iron and carbon under aerobic and anaerobic conditions in comparison with ion,pH and pE trends in experimental data.The models showed that corrosion processes are inhibited by some natural environmental factors,because dissolved oxygen would cause more iron from the bolts to oxidize into solution.These interdisciplinary insights into corrosion failure of underground anchor bolts confirm that environmental factors are important contributors to stress corrosion cracking.
基金supports from the National Natural Science Foundation of China (Nos. 51204166 and 51174195)the Advantage Disciplines Construction Fund Program of Jiangsu Universities (No. SZBF2011-6-B35)
文摘The roof of a roadway under goal with ultra-close separation consists of thin rock strata and rocks caving in upper goal. Influenced by the mining of the upper coal seam, the roof is loose and broken, and its integ- rity is poor. Resin anchored bolts cannot provide an effective anchoring force in such roof conditions. By conducting free expansion tests and field pull-out tests on a hydraulic expansion bolt, this study has ana- lyzed the influencing factors and laws of radial expansion and anchoring force changes in the rod body. This has revealed the anchoring mechanism of such bolts, and has obtained reasonable water injection pressures and suitable drilling diameters (which are 20-25 MPa and 32-35 mm respectively) for the hydraulic expansion bolt (cR28 mm) used in these tests. Based on pull-out tests at different interlayer spacing, the applicability of hydraulic expansion bolts had been verified for controlling the roof of road- ways under goal with ultra-close distance. Combined with the deformation and failure characteristics of the test roadway roof, this paper proposes a united roof-control technology based on the use of hydraulic expansion bolts and advancing intubation for the roof. Engineering practice indicated that the roof of the test roadway did not generate leaking and caving phenomenon, and the amount of roof deformation was controlled to within 150 mm. Maintenance of the roadway roof has been improved significantly, which ensures safe mining in coal seams with ultra-close separation.
文摘The designing method and the supporting mechanism of both bolt and small cable anchor for full seam roadway in the weaker thick coal seam are systematically analyzed, and the construction technology and the supporting results are briefly summarized.
基金The National Natural Science Foundation of China(No.51778485).
文摘The mixed model of improved exponential and power function and unequal interval gray GM(1,1)model have poor accuracy in predicting the maximum pull-out load of anchor bolts.An optimal combination model was derived using the optimally weighted combination theory and the minimum sum of logarithmic squared errors as the objective function.Two typical anchor bolt pull-out engineering cases were selected to compare the performance of the proposed model with those of existing ones.Results showed that the optimal combination model was suitable not only for the slow P-s curve but also for the steep P-s curve.Its accuracy and stable reliability,as well as its prediction capability classification,were better than those of the other prediction models.Therefore,the optimal combination model is an effective processing method for predicting the maximum pull-out load of anchor bolts according to measured data.
文摘The purpose of this paper is to reveal the stress distribution characteristic along the full length anchor bolt. Based on the mechanic model set up, the author calculated the anchor mechanism of the full length resin rock bolt. The stress distribution characteristic is different according to different type of surrounding rock. The conclusion is important to optimize the roadway bolt support design.
文摘To solve the deficiency of steel anchor blot in corrosion resistance and flaw of GFRP anchor bolt in fracture resistance, our research group develops a new composite anchor bolt made of steel strands wrapped up with compound fiber resin. To improve the cohesion performance of the composite anchor bolt, pull-out tests of different composite anchor bolts with different groove intervals and depths were made and analyzed. The results show that the pulling resistance of the composite anchor bolt increases with the increase of groove interval and depth, but groove interval and depth have optimal value. Based on elastic mechanics, the cohesion between anchor bolts and anchor bodies and its distribution characteristics caused by axial tension are analyzed and cohesion formula is obtained. By contrast, the experimental result is consistent with the theoretical analysis. Therefore, the surficial change of anchor colts could influence the performance of the composite anchor bolt. The cohesion force and anchorage performance can be improved by changing the surface of anchor bolts. Research results show that the new composite anchor bolt is high-performance material in the civil engineering.
基金supported by the National Natural Science Foundation of China (No. 50874103)the National Basic Research Program of China (No. 2010CB226805)+1 种基金the Natural Science Foundation of Jiangsu Province (No. BK2008135)as well as by the Open Foundation of State Key Laboratory of Geomechanics and Deep Underground Engineering (No. SKLGDUEK0905)
文摘A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' was studied for anchor bolts and cables. The rail roadway of the 2-501 working face in the Liyazhuang Mine of the Huozhou coal area located in Shanxi province was used for field trials. The geological conditions used there were used during the design phase. The new ''highly resistant, yielding'' support system has a core of high strength, yielding bolts and anchor cables. The field tests show that this support system adapts well to the deformation and pressure in the deep broken soft rock. The support system effectively controls damage to the roadway and ensures the long term stability of the wall rock and safe production in the coal mine. This provides a remarkable economic and social benefit and has broad prospects for fur- ther application.
基金Financial support for this work, provided by the National Natural Science Foundation of China (No. 51174195)the Graduate Student Scientific Research Innovation Project of the Jiangsu Province Ordinary University (No. CXZZ12_0954)the Research Foundation of the State Key Laboratory of Coal Resources and Mine Safety (No. SKLCRSM08X04)
文摘In order to avoid the deep-well oil shale roadway being deformed, damaged, or difficult to maintain after excavating and supporting in Haishiwan coal mine, this paper has analyzed the characteristics of the deformed roadway and revealed its failure mechanism by taking comprehensively the methods of field geological investigation, displacement monitoring of surrounding rock, rock properties and hydration properties experiments and field application tests. Based on this work, the high-resistance controlled yielding supporting principle is proposed, which is: to "resist" by high pre-tightening force and high stiff- ness in the early stage, to "yield" by making use of the controlled deformation of a yielding tube in the middle stage, and to "fix" by applying total-section Gunite in the later stage. A high-resistance controlled yielding supporting technique of "high pre-tightening force yielding anchor bolt + small-bore pre-tight- ening force anchor cable + rebar ladder beam + rhombic metal mesh + lagging gunite" has been estab- lished, and industrial on site testing implemented. The practical results show that the high-resistance controlled yielding supporting technique can effectively control the large deformation and long-time rheology of deep-well oil shale roadways and can provide beneficial references for the maintenance of other con-generic roadways.Deep-well Oil shale
基金the National Natural Science Foundation of China(Nos.51708316 and 51778312)the China Postdoctoral Science Foundation(No.2018M632641)+1 种基金the Shandong Provincial Key Research and Development Program(Nos.2017GSF16107 and 2018GSF117008)the Shandong Provincial Natural Science Foundation(Nos.ZR2016EEQ08 and ZR2017PEE006)。
文摘Combined with fiber Bragg grating(FBG)sensing technology,four glass fiber reinforced polymer(GFRP)anti-floating anchors and four steel anti-floating anchors were tested for on-site destructive failure to investigate the anchoring performance and the bonding characteristics between GFRP anti-floating anchor and concrete floor.The test results show that bending GFRP anchor will be broken at the common boundary between vertical anchorage section and bending section during the pullout process,and the spring-back load provided by the rupture contributes to a decrease of bearing capacity and an inflection point on the load-slip curve.The loaddisplacement curve of the straight anchor GFRP anti-floating anchor is smoother and has better predictability than the same type of steel anchor.Additionally,different forms of GFRP anti-floating bolt have different bondslip constitutive relations.By introducing the sliding-slip correction factor of bending bolt,constitutive models describing the rising-section of sliding-slip relation of bending and straight-anchored GFRP anti-floating bolt are established respectively.The model can fit the test results rightly.