Direct measurement of slip length is based on the measured fluid velocity near solid boundary. However, previous micro particle image velocimetry/particle tracking velocimetry (microPIV/PTV) measurements have report...Direct measurement of slip length is based on the measured fluid velocity near solid boundary. However, previous micro particle image velocimetry/particle tracking velocimetry (microPIV/PTV) measurements have reported surprisingly large measured near-wall velocities of pressure-driven flow in apparent contradiction with the no-slip hy-pothesis and experimental results from other techniques. To better interpret the measured results of the microPIV/PTV, we performed velocity profile measurements near a hy-drophilic wall (z = 0.25-1.5 μm) with two sizes of tracer particles (φ 50 nm and φ200 nm). The experimental results indicate that, at less than 1 μm from the wall, the deviations between the measured velocities and no-slip theoretical values obviously decrease from 93% of φ200 nm particles to 48% of φ50 nm particles. The Boltzmann-like exponential measured particle concentrations near wall were found. Based on the non linear Boltzmann distribution of particle concentration and the effective focus plane thickness, we illustrated the reason of the apparent velocity increase near wall and proposed a method to correct the measured velocity profile. By this method, the deviations between the corrected measured velocities and the no-slip theoretical velocity decrease from 45.8% to 10%, and the measured slip length on hy-drophilic glass is revised from 75 nm to 16 nm. These results indicated that the particle size and the biased particle concentration distribution can significantly affect near wall velocity measurement via microPIV/PTV, and result in larger measured velocity and slip length close to wall.展开更多
Two calculation methods on the partition functions for diatomic molecules in plas- mas out of thermal equilibrium are reported. A Boltzmann distribution for the electronic, vi- brational and rotational quantum levels ...Two calculation methods on the partition functions for diatomic molecules in plas- mas out of thermal equilibrium are reported. A Boltzmann distribution for the electronic, vi- brational and rotational quantum levels is assumed in the two calculation methods. The results obtained by two methods are displayed for four sorts of diatomic molecules, 02, N2, OH and NO, that are present in humid air plasmas. The calculation method of density for the electronically excited states is developed. Finally, a method to calculate the partition functions for simulating the non-normalized diatomic spectra is discussed.展开更多
Wireless Sensor Network (WSN) is an independent device that comprises a discrete collection of Sensor Nodes (SN) to sense environmental positions,device monitoring, and collection of information. Due to limited energ...Wireless Sensor Network (WSN) is an independent device that comprises a discrete collection of Sensor Nodes (SN) to sense environmental positions,device monitoring, and collection of information. Due to limited energy resourcesavailable at SN, the primary issue is to present an energy-efficient framework andconserve the energy while constructing a route path along with each sensor node.However, many energy-efficient techniques focused drastically on energy harvesting and reduced energy consumption but failed to support energy-efficient routingwith minimal energy consumption in WSN. This paper presents an energy-efficientrouting system called Energy-aware Proportional Fairness Multi-user Routing(EPFMR) framework in WSN. EPFMR is deployed in the WSN environment usingthe instance time. The request time sent for the route discovery is the foremost stepdesigned in the EPFMR framework to reduce the energy consumption rate. Theproportional fairness routing in WSN selects the best route path for the packet flowbased on the relationship between the periods of requests between different SN.Route path discovered for packet flow also measure energy on multi-user route pathusing the Greedy Instance Fair Method (GIFM). The GIFM in EPFMR developsnode dependent energy-efficient localized route path, improving the throughput.The energy-aware framework maximizes the throughput rate and performs experimental evaluation on factors such as energy consumption rate during routing,Throughput, RST, node density and average energy per packet in WSN. The RouteSearching Time (RST) is reduced using the Boltzmann Distribution (BD), and as aresult, the energy is minimized on multi-user WSN. Finally, GIFM applies aninstance time difference-based route searching on WSN to attain an optimal energyminimization system. Experimental analysis shows that the EPFMR framework canreduce the RST by 23.47% and improve the throughput by 6.79% compared withthe state-of-the-art works.展开更多
Hα(Balmer-alpha), Hβ (Balmer-beta) and Hγ (Balmer-gamma) spectral line inten- sities in atomic hydrogen plasma are investigated by using a high-power RF source. The intensities of the Hα, Hβ and Hγ spectra...Hα(Balmer-alpha), Hβ (Balmer-beta) and Hγ (Balmer-gamma) spectral line inten- sities in atomic hydrogen plasma are investigated by using a high-power RF source. The intensities of the Hα, Hβ and Hγ spectral lines are detected by increasing the input power (0-6 kW) of ICPs (inductively coupled plasmas). With the increase of net input power, the intensity of Hα im- proves rapidly (0-2 kW), and then reaches its dynamic equilibrium; the intensities of Hβ can be divided into three processes: obvious increase (0-2 kW), rapid increase (2-4 kW), almost constant (4-6 kW); while the intensities of Hγ increase very slowly. The energy levels of the excited hydro- gen atoms and the splitting energy levels produced by an obvious Stark effect play an important role in the results.展开更多
The title complex is widely used as an efficient key component of Ziegler-Natta catalyst for stereospecific polymerization of dienes to produce synthetic rubbers. However, the quantitative structure-activity relations...The title complex is widely used as an efficient key component of Ziegler-Natta catalyst for stereospecific polymerization of dienes to produce synthetic rubbers. However, the quantitative structure-activity relationship(QSAR) of this kind of complexes is still not clear mainly due to the difficulties to obtain their geometric molecular structures through laboratory experiments. An alternative solution is the quantum chemistry calculation in which the comformational population shall be determined. In this study, ten conformers of the title complex were obtained with the function of molecular dynamics conformational search in Gabedit 2.4.8, and their geometry optimization and thermodynamics calculation were made with a Sparkle/PM7 approach in MOPAC 2012. Their Gibbs free energies at 1 atm. and 298.15 K were calculated. Population of the conformers was further calculated out according to the theory of Boltzmann distribution, indicating that one of the ten conformers has a dominant population of 77.13%.展开更多
Based on the analysis of the Boltzmann's distribution in an infinitely high temperature found degeneration of the thermodynamic system in a purely informational with independently of each particle on its energy level...Based on the analysis of the Boltzmann's distribution in an infinitely high temperature found degeneration of the thermodynamic system in a purely informational with independently of each particle on its energy level, thus providing them full visibility of and the ability to calculate the maximum entropy in the Boltzmann formula S∞ = R·InNA = 455.251 J/(mol.K). This value, when expressed in terms of fundamental constants, is itself a physical and chemical constants and mole monatomic ideal gas is unsurpassed in any studied temperature range. For complex substances this limit increases in direct proportion to their atomic. The existence of two limits entropy change--lower, equal to zero according to the third law of thermodynamics, and the top, equal to S∞, makes possible the explicit expression of the temperature dependence of the entropy in the form of an exponentialS=S∞exp[-5030.31p 2/5 /(M3/5T)](5/2)r e/s∞. rather than in the form of a logarithmic dependence of the infinite by the approximateformula Sakura-Tetrode with which this the dependence is almost identical in the studied temperature range (100-10,000 K), but not absurd negative entropy in the extrapolation formula Sakura-Tetrode absolute zero to the region and especially in the area of T → ∞where it turns S →∞.展开更多
Operant conditioning is one of the fundamental mechanisms of animal learning, which suggests that the behavior of all animals, from protists to humans, is guided by its consequences. We present a new stochastic learni...Operant conditioning is one of the fundamental mechanisms of animal learning, which suggests that the behavior of all animals, from protists to humans, is guided by its consequences. We present a new stochastic learning automaton called a Skinner au- tomaton that is a psychological model for formalizing the theory of operant conditioning. We identify animal operant learning with a thermodynamic process, and derive a so-called Skinner algorithm from Monte Carlo method as well as Metropolis algo- rithm and simulated annealing. Under certain conditions, we prove that the Skinner automaton is expedient, 6-optimal, optimal, and that the operant probabilities converge to the set of stable roots with probability of 1. The Skinner automaton enables ma- chines to autonomously learn in an animal-like way.展开更多
Initial allocation modes and schemes are studied in this paper to provide guidelines for allocation of carbon emission permits in power system. We first introduce different allocation modes and the need to apply free ...Initial allocation modes and schemes are studied in this paper to provide guidelines for allocation of carbon emission permits in power system. We first introduce different allocation modes and the need to apply free allocation to assignability of emission permits. Then, we compare two different allocation schemes, which are based on historical emissions and generation performance standard. Further, a new allocation scheme based on Boltzmann distribution is proposed. Finally, a case study on Shanghai power grid in China is conducted to compare the allocation effects of these schemes respectively. The analytical results show that Boltzmann distribution based scheme has the best performance and should be adopted when developing initial allocation of carbon emission permits in Chinese power systems.展开更多
The particles are one of the most promising materials in the 21st century,and have become one of the research hotspots in many disciplines111.In the process of application or characterization,it is usually necessary t...The particles are one of the most promising materials in the 21st century,and have become one of the research hotspots in many disciplines111.In the process of application or characterization,it is usually necessary to disperse the particles(the particle size is commonly less than 1 pm)in the solvent121.It is generally believed that the particles in the solution are uniformly distributed after simple handling,such as ultrasonication,shaking,or pipetting131.If the density of particles is different from that of the solvent,the particles in the solution will sink(assuming Boltzmann distribution according to the most probable macroscopic state of statistical thermodynamics)due to the influence of the gravNational potential field(Fig.l).展开更多
基金supported by the National Natural Science Foundation of China (10872203)the National Basic Research Program(2007AC744701)the CAS Research and Development Program of China (KSCX2-YW-H18)
文摘Direct measurement of slip length is based on the measured fluid velocity near solid boundary. However, previous micro particle image velocimetry/particle tracking velocimetry (microPIV/PTV) measurements have reported surprisingly large measured near-wall velocities of pressure-driven flow in apparent contradiction with the no-slip hy-pothesis and experimental results from other techniques. To better interpret the measured results of the microPIV/PTV, we performed velocity profile measurements near a hy-drophilic wall (z = 0.25-1.5 μm) with two sizes of tracer particles (φ 50 nm and φ200 nm). The experimental results indicate that, at less than 1 μm from the wall, the deviations between the measured velocities and no-slip theoretical values obviously decrease from 93% of φ200 nm particles to 48% of φ50 nm particles. The Boltzmann-like exponential measured particle concentrations near wall were found. Based on the non linear Boltzmann distribution of particle concentration and the effective focus plane thickness, we illustrated the reason of the apparent velocity increase near wall and proposed a method to correct the measured velocity profile. By this method, the deviations between the corrected measured velocities and the no-slip theoretical velocity decrease from 45.8% to 10%, and the measured slip length on hy-drophilic glass is revised from 75 nm to 16 nm. These results indicated that the particle size and the biased particle concentration distribution can significantly affect near wall velocity measurement via microPIV/PTV, and result in larger measured velocity and slip length close to wall.
文摘Two calculation methods on the partition functions for diatomic molecules in plas- mas out of thermal equilibrium are reported. A Boltzmann distribution for the electronic, vi- brational and rotational quantum levels is assumed in the two calculation methods. The results obtained by two methods are displayed for four sorts of diatomic molecules, 02, N2, OH and NO, that are present in humid air plasmas. The calculation method of density for the electronically excited states is developed. Finally, a method to calculate the partition functions for simulating the non-normalized diatomic spectra is discussed.
文摘Wireless Sensor Network (WSN) is an independent device that comprises a discrete collection of Sensor Nodes (SN) to sense environmental positions,device monitoring, and collection of information. Due to limited energy resourcesavailable at SN, the primary issue is to present an energy-efficient framework andconserve the energy while constructing a route path along with each sensor node.However, many energy-efficient techniques focused drastically on energy harvesting and reduced energy consumption but failed to support energy-efficient routingwith minimal energy consumption in WSN. This paper presents an energy-efficientrouting system called Energy-aware Proportional Fairness Multi-user Routing(EPFMR) framework in WSN. EPFMR is deployed in the WSN environment usingthe instance time. The request time sent for the route discovery is the foremost stepdesigned in the EPFMR framework to reduce the energy consumption rate. Theproportional fairness routing in WSN selects the best route path for the packet flowbased on the relationship between the periods of requests between different SN.Route path discovered for packet flow also measure energy on multi-user route pathusing the Greedy Instance Fair Method (GIFM). The GIFM in EPFMR developsnode dependent energy-efficient localized route path, improving the throughput.The energy-aware framework maximizes the throughput rate and performs experimental evaluation on factors such as energy consumption rate during routing,Throughput, RST, node density and average energy per packet in WSN. The RouteSearching Time (RST) is reduced using the Boltzmann Distribution (BD), and as aresult, the energy is minimized on multi-user WSN. Finally, GIFM applies aninstance time difference-based route searching on WSN to attain an optimal energyminimization system. Experimental analysis shows that the EPFMR framework canreduce the RST by 23.47% and improve the throughput by 6.79% compared withthe state-of-the-art works.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2011GB108011 and 2010GB103001)the Major International(Regional) Project Cooperation and Exchanges(No.11320101005)
文摘Hα(Balmer-alpha), Hβ (Balmer-beta) and Hγ (Balmer-gamma) spectral line inten- sities in atomic hydrogen plasma are investigated by using a high-power RF source. The intensities of the Hα, Hβ and Hγ spectral lines are detected by increasing the input power (0-6 kW) of ICPs (inductively coupled plasmas). With the increase of net input power, the intensity of Hα im- proves rapidly (0-2 kW), and then reaches its dynamic equilibrium; the intensities of Hβ can be divided into three processes: obvious increase (0-2 kW), rapid increase (2-4 kW), almost constant (4-6 kW); while the intensities of Hγ increase very slowly. The energy levels of the excited hydro- gen atoms and the splitting energy levels produced by an obvious Stark effect play an important role in the results.
基金supported by the National Natural Science Foundation of China(No.21476119)
文摘The title complex is widely used as an efficient key component of Ziegler-Natta catalyst for stereospecific polymerization of dienes to produce synthetic rubbers. However, the quantitative structure-activity relationship(QSAR) of this kind of complexes is still not clear mainly due to the difficulties to obtain their geometric molecular structures through laboratory experiments. An alternative solution is the quantum chemistry calculation in which the comformational population shall be determined. In this study, ten conformers of the title complex were obtained with the function of molecular dynamics conformational search in Gabedit 2.4.8, and their geometry optimization and thermodynamics calculation were made with a Sparkle/PM7 approach in MOPAC 2012. Their Gibbs free energies at 1 atm. and 298.15 K were calculated. Population of the conformers was further calculated out according to the theory of Boltzmann distribution, indicating that one of the ten conformers has a dominant population of 77.13%.
文摘Based on the analysis of the Boltzmann's distribution in an infinitely high temperature found degeneration of the thermodynamic system in a purely informational with independently of each particle on its energy level, thus providing them full visibility of and the ability to calculate the maximum entropy in the Boltzmann formula S∞ = R·InNA = 455.251 J/(mol.K). This value, when expressed in terms of fundamental constants, is itself a physical and chemical constants and mole monatomic ideal gas is unsurpassed in any studied temperature range. For complex substances this limit increases in direct proportion to their atomic. The existence of two limits entropy change--lower, equal to zero according to the third law of thermodynamics, and the top, equal to S∞, makes possible the explicit expression of the temperature dependence of the entropy in the form of an exponentialS=S∞exp[-5030.31p 2/5 /(M3/5T)](5/2)r e/s∞. rather than in the form of a logarithmic dependence of the infinite by the approximateformula Sakura-Tetrode with which this the dependence is almost identical in the studied temperature range (100-10,000 K), but not absurd negative entropy in the extrapolation formula Sakura-Tetrode absolute zero to the region and especially in the area of T → ∞where it turns S →∞.
基金supported by the National Natural Science Foundation of China(Grant Nos.61075110,60774077,61375086)the National Basic Research Program of China("973" Project)(Grant No.2012CB720000)+3 种基金the National High-Tech Research and Development Program of China("863" Project)(Grant No.2007AA04Z226)the Beijing Natural Science Foundation(Grant No.4102011)the Key Project of S&T Plan of Beijing Municipal Commission of Education(Grant Nos.KM2008-10005016,KZ201210005001)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20101103110007)
文摘Operant conditioning is one of the fundamental mechanisms of animal learning, which suggests that the behavior of all animals, from protists to humans, is guided by its consequences. We present a new stochastic learning automaton called a Skinner au- tomaton that is a psychological model for formalizing the theory of operant conditioning. We identify animal operant learning with a thermodynamic process, and derive a so-called Skinner algorithm from Monte Carlo method as well as Metropolis algo- rithm and simulated annealing. Under certain conditions, we prove that the Skinner automaton is expedient, 6-optimal, optimal, and that the operant probabilities converge to the set of stable roots with probability of 1. The Skinner automaton enables ma- chines to autonomously learn in an animal-like way.
基金supported by State Grid Corporation of China(No.520900140069)
文摘Initial allocation modes and schemes are studied in this paper to provide guidelines for allocation of carbon emission permits in power system. We first introduce different allocation modes and the need to apply free allocation to assignability of emission permits. Then, we compare two different allocation schemes, which are based on historical emissions and generation performance standard. Further, a new allocation scheme based on Boltzmann distribution is proposed. Finally, a case study on Shanghai power grid in China is conducted to compare the allocation effects of these schemes respectively. The analytical results show that Boltzmann distribution based scheme has the best performance and should be adopted when developing initial allocation of carbon emission permits in Chinese power systems.
基金supported by the National Natural Science Foundation of China(Nos.22090050,21874121)the National Key Research and Development Program of China(No.2018YFE0206900)+1 种基金the Hubei Provincial Natural Science Foundation,China(No.2020CFA037)the Zhejiang Provincial Natural Science Foundation,China(No.LD21B050001).
文摘The particles are one of the most promising materials in the 21st century,and have become one of the research hotspots in many disciplines111.In the process of application or characterization,it is usually necessary to disperse the particles(the particle size is commonly less than 1 pm)in the solvent121.It is generally believed that the particles in the solution are uniformly distributed after simple handling,such as ultrasonication,shaking,or pipetting131.If the density of particles is different from that of the solvent,the particles in the solution will sink(assuming Boltzmann distribution according to the most probable macroscopic state of statistical thermodynamics)due to the influence of the gravNational potential field(Fig.l).