The formulas for atomic displacements and Hamiltonian of a thin crystal film in phonon occupation number representation are obtained with the aid of Green's function theory. On the basis of these results, the form...The formulas for atomic displacements and Hamiltonian of a thin crystal film in phonon occupation number representation are obtained with the aid of Green's function theory. On the basis of these results, the formulas for thermal expansion coefficients of the thin crystal film are derived with the perturbation theory, and the numerical calculations are carried out. The results show that the thinner films have larger thermal expansion coefficients.展开更多
Green's functions for Blot's dynamic equation in the frequency domain can be a highly useful tool for the investigation of dynamic responses of a saturated porous medium. Its applications are found in soil dynamics,...Green's functions for Blot's dynamic equation in the frequency domain can be a highly useful tool for the investigation of dynamic responses of a saturated porous medium. Its applications are found in soil dynamics, seismology, earthquake engineering, rock mechanics, geophysics, and acoustics. However, the mathematical work for deriving it can be daunting. Green's functions have been presented utilizing an analogy between the dynamic thermoelasticity and the dynamic poroelasticity in the frequency domain using the u-p formulation. In this work, a special term "decoupling coefficient" for the decomposition of the fast and slow dilatational waves is proposed and expressed to present a new methodology for deriving the poroelastodynamic Green's functions. The correct- ness of the solution is demonstrated by numerically comparing the current solution with Cheng's previous solution. The separation of the two waves in the present methodology allows the more accurate evaluation of Green's functions, particularly the solution of the slow dilatational wave. This can be advantageous for the numerical implementation of the boundary element method (BEM) and other applications.展开更多
The simple equation relating the activity coefficient of each solute in mixed electrolyte solution to its value in binary solutions under isopiestic equilibrium was tested by comparison with the experimental data for ...The simple equation relating the activity coefficient of each solute in mixed electrolyte solution to its value in binary solutions under isopiestic equilibrium was tested by comparison with the experimental data for the 18 electrolyte solutions consisting of 1:1, 1:2, and 1:3 electrolytes. The isopiestic measurements were made on the quaternary system BaCl2-NH4Br-NaI-H2O and its ternary subsystems NaI-NH4Br-H2O, NaI-BaCl2-H2O, and NH4Br-BaCl2-H2O at 298.15K. The results were used to test the applicability of the Zdanovskii's rule to the mixed electrolyte solutions which contain no common ions, and the agreement is excellent. The activity coefficients of the solutes in the above quaternary and ternary systems calculated from the above-mentioned simple equation are in good agreement with the Pitzer's equation.展开更多
The effects of two parallel porous walls are investigated, consisting of the Darcy number and the porosity of a porous medium, on the behavior of turbulent shear flows as well as skin-friction drag. The turbulent chan...The effects of two parallel porous walls are investigated, consisting of the Darcy number and the porosity of a porous medium, on the behavior of turbulent shear flows as well as skin-friction drag. The turbulent channel flow with a porous surface is directly simulated by the lattice Boltzmann method (LBM). The Darcy-Brinkman- Forcheimer (DBF) acting force term is added in the lattice Boltzmann equation to simu- late the turbulent flow bounded by porous walls. It is found that there are two opposite trends (enhancement or reduction) for the porous medium to modify the intensities of the velocity fluctuations and the Reynolds stresses in the near wall region. The parametric study shows that flow modification depends on the Darcy number and the porosity of the porous medium. The results show that, with respect to the conventional impermeable wall, the degree of turbulence modification does not depend on any simple set of param- eters obviously. Moreover, the drag in porous wall-bounded turbulent flow decreases if the Darcy number is smaller than the order of O(10-4) and the porosity of porous walls is up to 0.4.展开更多
The influence of density,foliage and stem flexibility on the roughness coefficients under unsubmerged conditions,such as Manning's n,is investigated experimentally.An instrumentation system has been developed for mea...The influence of density,foliage and stem flexibility on the roughness coefficients under unsubmerged conditions,such as Manning's n,is investigated experimentally.An instrumentation system has been developed for measuring the flow rate ranging from 0.1 to 0.3 L/s under the condition of different artificial foliated reeds.Based on the experimental results,the influence on the relationship between n with different density,foliage,flexibility and flow depth is discussed.It is found that the foliage and the density are the important factors affecting Manning's n.At a range of relatively low velocity and relatively large bending stiffness of stem,Manning's n is not influenced significanthy by the flexibility of stem.展开更多
In this paper, the dielectric properties of CO2, CO2/air, CO2/O2, CO2/N2, CO2/CF4, CO2/CH4, CO2/He, C02/H2, CO2/NH3 and CO2/CO were investigated based on the Boltzmann equation analysis, in which the reduced critical ...In this paper, the dielectric properties of CO2, CO2/air, CO2/O2, CO2/N2, CO2/CF4, CO2/CH4, CO2/He, C02/H2, CO2/NH3 and CO2/CO were investigated based on the Boltzmann equation analysis, in which the reduced critical electric field strength (E/N)cr of the gases was derived from the calculated electron energy distribution function (EEDF) by solv- ing the Boltzmann transport equation. In this work, it should be noted that the fundamental data were carefully selected by the published experimental results and calculations to ensure the validity of the calculation. The results indicate that if He, H2, N2 and CH4, in which there axe high ionization coefficients or a lack of attachment reactions, are added into CO2, the dielectric properties will decrease. On the other hand, air, O2, NH3 and CFa (ranked in terms of (E/N)cr value in increasing order) have the potential to improve the dielectric property of CO2 at room temperature.展开更多
Based on isotropie linear poroelastic theory and under the undrained condition, we summarize three equations connecting the Skempton's coefficient B with the groundwater level. After analysis, we propose a method to ...Based on isotropie linear poroelastic theory and under the undrained condition, we summarize three equations connecting the Skempton's coefficient B with the groundwater level. After analysis, we propose a method to calculate the Skempton's coefficient B according to the relationship between water level and tidal strain. With this method we can get the value of B without the earthquake occurrence, which can provide the high frequency waves for research. Besides, we can also get the in-suit Skempton's coefficient B without the experiment of rock physics. In addition, we analyze the observed data of Changping station recorded in groundwater monitoring network (abv., GMN) before and after the Wenchuan Ms8.0 with this method, and find out there's a slight change of the value of B after the seismic waves passed by, which implies that the propagation of seismic waves may have brought some variations to the poroelastic medium of the well.展开更多
In this study,a two-dimensional approach is elaborated to study with the lattice Boltzmann method(LBM)the seepage of water in the pores of a soil.Firstly,the D2Q9 model is selected to account for the discrete velocity...In this study,a two-dimensional approach is elaborated to study with the lattice Boltzmann method(LBM)the seepage of water in the pores of a soil.Firstly,the D2Q9 model is selected to account for the discrete velocity distribution of water flow.In particular,impermeability is considered as macroscopic boundary condition for the left and right domain sides,while the upper and lower boundaries are assumed to behave as pressure boundaries controlled by different densities.The micro-boundary conditions are implemented through the standard rebound strategy and a non-equilibrium extrapolation scheme.Matlab is used for the development of the related algorithm.Finally,the influence of porosity,permeability,osmotic pressure and other factors is assessed with regard to seepage characteristics and the ensuing results are compared with Darcy’s law.The computations show that,for fixed initial conditions,the pore structure has a certain influence on the local velocity of seepage,but the overall state is stable,and the average velocity of each layer is the same.The larger the pore passage is,the faster the flow velocity is,and vice versa.For low permeability,the numerical results are consistent with the Darcy's law.The greater the pressure difference between the inlet and outlet of seepage,the greater the seepage rate.The relationship between them is linear(yet in good agreement with Darcy’s law).展开更多
The lattice Boltzmann method (LBM) is employed to simulate the uniform flow past a circular cylinder. The performance of the two-dimensional LBM model on the prediction of force coefficients and vortex shedding freque...The lattice Boltzmann method (LBM) is employed to simulate the uniform flow past a circular cylinder. The performance of the two-dimensional LBM model on the prediction of force coefficients and vortex shedding frequency is investigated. The local grid refinement technique and second-order boundary condition for curved walls are applied in the calculations. It is found that the calculated vortex shedding frequency, drag coefficient and lift coefficient are consistent with experimental results at Reynolds nu...展开更多
A real-time channel flood forecast model was developed to simulate channel flow in plain rivers based on the dynamic wave theory. Taking into consideration channel shape differences along the channel, a roughness upda...A real-time channel flood forecast model was developed to simulate channel flow in plain rivers based on the dynamic wave theory. Taking into consideration channel shape differences along the channel, a roughness updating technique was developed using the Kalman filter method to update Manning's roughness coefficient at each time step of the calculation processes. Channel shapes were simplified as rectangles, triangles, and parabolas, and the relationships between hydraulic radius and water depth were developed for plain rivers. Based on the relationship between the Froude number and the inertia terms of the momentum equation in the Saint-Venant equations, the relationship between Manning's roughness coefficient and water depth was obtained. Using the channel of the Huaihe River from Wangjiaba to Lutaizi stations as a case, to test the performance and rationality of the present flood routing model, the original hydraulic model was compared with the developed model. Results show that the stage hydrographs calculated by the developed flood routing model with the updated Manning's roughness coefficient have a good agreement with the observed stage hydrographs. This model performs better than the original hydraulic model.展开更多
文摘The formulas for atomic displacements and Hamiltonian of a thin crystal film in phonon occupation number representation are obtained with the aid of Green's function theory. On the basis of these results, the formulas for thermal expansion coefficients of the thin crystal film are derived with the perturbation theory, and the numerical calculations are carried out. The results show that the thinner films have larger thermal expansion coefficients.
基金Project supported by the National Natural Science Foundation of China(Nos.51478435,11402150,and 11172268)
文摘Green's functions for Blot's dynamic equation in the frequency domain can be a highly useful tool for the investigation of dynamic responses of a saturated porous medium. Its applications are found in soil dynamics, seismology, earthquake engineering, rock mechanics, geophysics, and acoustics. However, the mathematical work for deriving it can be daunting. Green's functions have been presented utilizing an analogy between the dynamic thermoelasticity and the dynamic poroelasticity in the frequency domain using the u-p formulation. In this work, a special term "decoupling coefficient" for the decomposition of the fast and slow dilatational waves is proposed and expressed to present a new methodology for deriving the poroelastodynamic Green's functions. The correct- ness of the solution is demonstrated by numerically comparing the current solution with Cheng's previous solution. The separation of the two waves in the present methodology allows the more accurate evaluation of Green's functions, particularly the solution of the slow dilatational wave. This can be advantageous for the numerical implementation of the boundary element method (BEM) and other applications.
基金the National-Natural Science Foundation of China (No.20476059, No.20276037) and 863 Hi-Technology Research and Development Program of China (2004 AA616040).
文摘The simple equation relating the activity coefficient of each solute in mixed electrolyte solution to its value in binary solutions under isopiestic equilibrium was tested by comparison with the experimental data for the 18 electrolyte solutions consisting of 1:1, 1:2, and 1:3 electrolytes. The isopiestic measurements were made on the quaternary system BaCl2-NH4Br-NaI-H2O and its ternary subsystems NaI-NH4Br-H2O, NaI-BaCl2-H2O, and NH4Br-BaCl2-H2O at 298.15K. The results were used to test the applicability of the Zdanovskii's rule to the mixed electrolyte solutions which contain no common ions, and the agreement is excellent. The activity coefficients of the solutes in the above quaternary and ternary systems calculated from the above-mentioned simple equation are in good agreement with the Pitzer's equation.
基金Supported by the National Natural Science Foundation of China (No.20476059, No.20276037) and 863 Hi-Technology Re-search and Development Program of China (2004 AA616040).
基金Project supported by the National Natural Science Foundation of China(Nos.10972132 and 11272198)
文摘The effects of two parallel porous walls are investigated, consisting of the Darcy number and the porosity of a porous medium, on the behavior of turbulent shear flows as well as skin-friction drag. The turbulent channel flow with a porous surface is directly simulated by the lattice Boltzmann method (LBM). The Darcy-Brinkman- Forcheimer (DBF) acting force term is added in the lattice Boltzmann equation to simu- late the turbulent flow bounded by porous walls. It is found that there are two opposite trends (enhancement or reduction) for the porous medium to modify the intensities of the velocity fluctuations and the Reynolds stresses in the near wall region. The parametric study shows that flow modification depends on the Darcy number and the porosity of the porous medium. The results show that, with respect to the conventional impermeable wall, the degree of turbulence modification does not depend on any simple set of param- eters obviously. Moreover, the drag in porous wall-bounded turbulent flow decreases if the Darcy number is smaller than the order of O(10-4) and the porosity of porous walls is up to 0.4.
基金The Public Science and Technology Research Funds Projects of Ocean under contract Nos 200905001 and 201005019UNESCO-IHE Partnership Research Fund (UPaRF) under contract No.60038881the National Natural Science Foundation of China under contract No.50939003
文摘The influence of density,foliage and stem flexibility on the roughness coefficients under unsubmerged conditions,such as Manning's n,is investigated experimentally.An instrumentation system has been developed for measuring the flow rate ranging from 0.1 to 0.3 L/s under the condition of different artificial foliated reeds.Based on the experimental results,the influence on the relationship between n with different density,foliage,flexibility and flow depth is discussed.It is found that the foliage and the density are the important factors affecting Manning's n.At a range of relatively low velocity and relatively large bending stiffness of stem,Manning's n is not influenced significanthy by the flexibility of stem.
基金supported in part by the National Key Basic Research Program of China(973 Program)(No.2015CB251002)the Science and Technology Project Funds of the Grid State Corporation of China(No.SGSNK00KJJS1501564)+2 种基金National Natural Science Foundation of China(Nos.51221005,51577145)the Fundamental Research Funds for the Central Universities of Chinathe Program for New Century Excellent Talents in University,China
文摘In this paper, the dielectric properties of CO2, CO2/air, CO2/O2, CO2/N2, CO2/CF4, CO2/CH4, CO2/He, C02/H2, CO2/NH3 and CO2/CO were investigated based on the Boltzmann equation analysis, in which the reduced critical electric field strength (E/N)cr of the gases was derived from the calculated electron energy distribution function (EEDF) by solv- ing the Boltzmann transport equation. In this work, it should be noted that the fundamental data were carefully selected by the published experimental results and calculations to ensure the validity of the calculation. The results indicate that if He, H2, N2 and CH4, in which there axe high ionization coefficients or a lack of attachment reactions, are added into CO2, the dielectric properties will decrease. On the other hand, air, O2, NH3 and CFa (ranked in terms of (E/N)cr value in increasing order) have the potential to improve the dielectric property of CO2 at room temperature.
基金supported by National Natural Science Foundation of China(40674024 and 40374019)
文摘Based on isotropie linear poroelastic theory and under the undrained condition, we summarize three equations connecting the Skempton's coefficient B with the groundwater level. After analysis, we propose a method to calculate the Skempton's coefficient B according to the relationship between water level and tidal strain. With this method we can get the value of B without the earthquake occurrence, which can provide the high frequency waves for research. Besides, we can also get the in-suit Skempton's coefficient B without the experiment of rock physics. In addition, we analyze the observed data of Changping station recorded in groundwater monitoring network (abv., GMN) before and after the Wenchuan Ms8.0 with this method, and find out there's a slight change of the value of B after the seismic waves passed by, which implies that the propagation of seismic waves may have brought some variations to the poroelastic medium of the well.
文摘In this study,a two-dimensional approach is elaborated to study with the lattice Boltzmann method(LBM)the seepage of water in the pores of a soil.Firstly,the D2Q9 model is selected to account for the discrete velocity distribution of water flow.In particular,impermeability is considered as macroscopic boundary condition for the left and right domain sides,while the upper and lower boundaries are assumed to behave as pressure boundaries controlled by different densities.The micro-boundary conditions are implemented through the standard rebound strategy and a non-equilibrium extrapolation scheme.Matlab is used for the development of the related algorithm.Finally,the influence of porosity,permeability,osmotic pressure and other factors is assessed with regard to seepage characteristics and the ensuing results are compared with Darcy’s law.The computations show that,for fixed initial conditions,the pore structure has a certain influence on the local velocity of seepage,but the overall state is stable,and the average velocity of each layer is the same.The larger the pore passage is,the faster the flow velocity is,and vice versa.For low permeability,the numerical results are consistent with the Darcy's law.The greater the pressure difference between the inlet and outlet of seepage,the greater the seepage rate.The relationship between them is linear(yet in good agreement with Darcy’s law).
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20060056036)
文摘The lattice Boltzmann method (LBM) is employed to simulate the uniform flow past a circular cylinder. The performance of the two-dimensional LBM model on the prediction of force coefficients and vortex shedding frequency is investigated. The local grid refinement technique and second-order boundary condition for curved walls are applied in the calculations. It is found that the calculated vortex shedding frequency, drag coefficient and lift coefficient are consistent with experimental results at Reynolds nu...
基金supported by the Special Fund for Public Welfare (Meteorology) of China (Grants No. GYHY201006037 and GYHY200906007)
文摘A real-time channel flood forecast model was developed to simulate channel flow in plain rivers based on the dynamic wave theory. Taking into consideration channel shape differences along the channel, a roughness updating technique was developed using the Kalman filter method to update Manning's roughness coefficient at each time step of the calculation processes. Channel shapes were simplified as rectangles, triangles, and parabolas, and the relationships between hydraulic radius and water depth were developed for plain rivers. Based on the relationship between the Froude number and the inertia terms of the momentum equation in the Saint-Venant equations, the relationship between Manning's roughness coefficient and water depth was obtained. Using the channel of the Huaihe River from Wangjiaba to Lutaizi stations as a case, to test the performance and rationality of the present flood routing model, the original hydraulic model was compared with the developed model. Results show that the stage hydrographs calculated by the developed flood routing model with the updated Manning's roughness coefficient have a good agreement with the observed stage hydrographs. This model performs better than the original hydraulic model.