High-quality bonding of 4-inch GaAs and Si is achieved using plasma-activated bonding technology.The influence of Ar plasma activation on surface morphology is discussed.When the annealing temperature is 300℃,the bon...High-quality bonding of 4-inch GaAs and Si is achieved using plasma-activated bonding technology.The influence of Ar plasma activation on surface morphology is discussed.When the annealing temperature is 300℃,the bonding strength reaches a maximum of 6.2 MPa.In addition,a thermal stress model for GaAs/Si wafers is established based on finite element analysis to obtain the distribution of equivalent stress and deformation variables at different temperatures.The shape varia-tion of the wafer is directly proportional to the annealing temperature.At an annealing temperature of 400℃,the maximum protrusion of 4 inches GaAs/Si wafers is 3.6 mm.The interface of GaAs/Si wafers is observed to be dense and defect-free using a transmission electron microscope.The characterization of interface elements by X-ray energy dispersion spectroscopy indi-cates that the elements at the interface undergo mutual diffusion,which is beneficial for improving the bonding strength of the interface.There is an amorphous transition layer with a thickness of about 5 nm at the bonding interface.The preparation of Si-based GaAs heterojunctions can enrich the types of materials required for the development of integrated circuits,improve the performance of materials and devices,and promote the development of microelectronics technology.展开更多
Aim To evaluate the interactive effects of different self- adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconi...Aim To evaluate the interactive effects of different self- adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 μm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment - silica coating + silanization. Specimens were stored in distilled water at 37℃ for 24 hours before testing shear bond strength. Results Silica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, B1, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP- containing self-adhesive resin cement CL had the highest bond strengths to zirconia. Conclusion Applying silica coating and tribochemical treatment improved the bond strength of self-adhesive resin cement to zirconia, especially for CL.展开更多
Based on the Canadian Standards Association (CSA) criteria,105 pullout specimens were tested to investigate the effect of different rib geometries on bond strength of glass fiber reinforced polymer (GFRP) rebars embed...Based on the Canadian Standards Association (CSA) criteria,105 pullout specimens were tested to investigate the effect of different rib geometries on bond strength of glass fiber reinforced polymer (GFRP) rebars embedded in concrete. Two kinds of conventional reinforcing rebars were also studied for comparison. Each rebar was embedded in a 150 mm concrete cube,with the embedded length being four times the rebar diameter. The experimental parameters were the rebar type,rebar component,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Theoretical analysis was also carried out to explain the experimental phenomena and results. The experimental and theoretical results indicated that the bond strength of GFRP rebars was about 13%~35% lower than that of steel rebars. The bond strength and bond-slip behavior of the specially machined rebars varied with the rebar type,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Using the results,design recom-mendations were made concerning optimum rib geometries of GFRP ribbed rebars with superior bond-slip characteristics,which concluded that the optimal rib spacing of ribbed rebars is the same as the rebar diameter,and that the optimal rib height is 6% of the rebar diameter.展开更多
The effect of freezing and thawing cycles on mechanical properties of concrete (compressive, splitting tensile strength) was experimentally investigated. According to the pullout test data of three kinds of deformed...The effect of freezing and thawing cycles on mechanical properties of concrete (compressive, splitting tensile strength) was experimentally investigated. According to the pullout test data of three kinds of deformed steel bars, the bond stress-slip curves after freezing and thawing were obtained. The empirical equations of peak bond strength were proposed that the damage accounted for effects of freezing and thawing cycle. Meanwhile, the mechanism of bond deterioration between steel bars and concrete after freezing and thawing cycles was discussed. All these conclusions will be useful to the durability design and reliability calculation of RC structures in cold region.展开更多
In this study, we evaluate the influence of post surface pre-treatments on the bond strength of four different cements to glass fiber posts. Eighty extracted human maxillary central incisors and canines were endodonti...In this study, we evaluate the influence of post surface pre-treatments on the bond strength of four different cements to glass fiber posts. Eighty extracted human maxillary central incisors and canines were endodontically treated and standardized post spaces were prepared. Four post pre-treatments were tested: (i) no pre-treatment (NS, control), (ii) sandblasting (SA), (iii) silanization (SI) and (iv) sandblasting followed by silanization (SS). Per pre-treatment, four dual-cure resin cements were used for luting posts: DMG LUXACORE Smartmix Dual, Multilink Automix, RelyX Unicem and Panavia F2.0. All the specimens were subjected to micro push-out test. Two-way analysis of variance and Tukey post hoc tests were performed (α=0.05) to analyze the data. Bond strength was significantly affected by the type of resin cement, and bond strengths of RelyX Unicem and Panavia F2.0 to the fiber posts were significantly higher than the other cement groups. Sandblasting significantly increased the bond strength of DMG group to the fiber posts.展开更多
The effect of steel corrosion on the behavior of bond between steel and the surrounding concrete was investigated. Pullout tests were carried out to demonstrate bond stress-slip response for reinforcing steel bars of ...The effect of steel corrosion on the behavior of bond between steel and the surrounding concrete was investigated. Pullout tests were carried out to demonstrate bond stress-slip response for reinforcing steel bars of a series of corrosion level. Specimens either confined or unconfined were investigated for evaluation of the effect of confinement on bond strength and failure mode. Also, the tests were analyzed using nonlinear finite element analysis. It was shown that for both confined and unconfined steel bars, bond strength generally decreases as the corrosion level increases when corrosion level is relatively high. Confinement was demonstrated to provide excellent means to conteract bond loss for corroded reinforcing steel bars. It was shown that unconfined specimens generally split at a small slip with a large crack width and result in splitting failure while confined specimens contribute to a small crack width and generally cause a pullout failure. The analysis results agree reasonably well with the experiments.展开更多
The effect of saliva contamination on the shear bond strength of orthodontic brackets, at various stages of the bonding procedure using a new self-etch primer was studied. The samples were divided into 4 groups accord...The effect of saliva contamination on the shear bond strength of orthodontic brackets, at various stages of the bonding procedure using a new self-etch primer was studied. The samples were divided into 4 groups according to 4 different enamel surface conditions: Group A: dry; Group B: saliva contamination before priming; Group C: saliva contamination after priming, and Group D: saliva contamination before and after priming. Stainless steel brackets were bonded in each test group with a light-cured composite resin (TransbondXT 3M). The shear bond strength was determined in the first 30 min after bonding. The analysis of variance indicated that the shear bond strengths of the 4 groups were significantly different (F=11.89, P<0.05). Tukey HSD tests indicated that contamination both before and after the application of the acid-etch primer resulted in a significantly lower (=4.6±1.7 MPa) shear bond strength than either the control group (=8.8±1.9 MPa) or the groups where contamination occurred either before (=7.9±2.0 MPa) or after (=6.9±1.5 MPa) the application of the primer. It was concluded that the new acid-etch primer could maintain adequate shear bond strength if contamination occurred either before or after the application of the primer. On the other hand, contamination both before and after the application of the primer could significantly reduce the shear bond strength of orthodontic brackets.展开更多
Based on traditional twin-roll casting process,Invar/Cu clad strips were successfully fabricated by using solid Invar alloy strip and molten Cu under conditions of high temperature,high pressure and plastic deformatio...Based on traditional twin-roll casting process,Invar/Cu clad strips were successfully fabricated by using solid Invar alloy strip and molten Cu under conditions of high temperature,high pressure and plastic deformation.A series of tests including tensile test,bending test,T-type peeling test and scanning electron microscope(SEM)and energy dispersive spectrometer(EDS)measurements were carried out to analyze the mechanical properties of Invar/Cu clad strips and the micro-morphology of tensile fracture surfaces and bonding interfaces.The results indicate that no delamination phenomenon occurs during the compatible deformation of Invar/Cu in bending test and only one stress platform exists in the tensile stress-strain curve when the bonding strength is large.On the contrary,different mechanical properties of Invar and Cu lead to delamination phenomenon during the uniaxial tensile test,which determines that two stress platforms occur on the stress-strain curve of Invar/Cu clad strips when two elements experience necking.The average peeling strength can be increased from13.85to42.31N/mm after heat treatment at800℃for1h,and the observation of the Cu side at peeling interface shows that more Fe is adhered on the Cu side after the heat treatment.All above illustrate that heat treatment can improve the strength of the bonding interface of Invar/Cu clad strips.展开更多
The purpose of this study was to evaluate the long time antibacterial properties and shear bond strength of experimental nano silver-containing cements (NSC). Nano silver base inorganic antibacterial powder was adde...The purpose of this study was to evaluate the long time antibacterial properties and shear bond strength of experimental nano silver-containing cements (NSC). Nano silver base inorganic antibacterial powder was added to the reinforced glass ionomer cement at five different weight ratios to obtain a series of nano silver-containing cements, then the antibacterial properties of three orthodontic cement products and five NSC samples were evaluated by the direct contact test (DCT) and the agar diffusion test (ADT). The DCT, which was based on turbidness determination of bacterial growth in 96-well microtiter plates, was performed in both fresh and aged for 1 day, 1 week, 2 weeks, 3 weeks, 4 weeks, 6 weeks, and 8 weeks tested materials. The shear bond strengthes of three orthodontic cement products and five NSC samples were examined using a universal testing machine. The ADT results indicated that there were no significant differences between NSCs and ORTHO LC fresh specimens. In the DCT experiment, all fresh silver nanoparticles-containing tested samples presented powerful antibacterial properties, but they gradually lost the effective antimicrobial agents with the extension of aging time. Finally, none of the tested materials maintained its antibacterial property after aging for 8 weeks. A gradually decreasing trend of bond strength presented with the increasing incorporation of nano silver base inorganic antibacterial powder into the glass ionomer cement, even though all the tested material specimens reached the ideal bond strength range. We may conclude that NSCs can contribute to decrease the demineralization rate around brackets without compromising bond strength.展开更多
Based on the Canadian Standards Association(CSA) criterion,experiments on 30 pull-out specimens were conducted to study the bond strength of deformed GFRP rebars with 8 different surface configurations.Each rebar was ...Based on the Canadian Standards Association(CSA) criterion,experiments on 30 pull-out specimens were conducted to study the bond strength of deformed GFRP rebars with 8 different surface configurations.Each rebar was embedded in a 150 mm concrete cube,and the test embedded length was four times of the rebar diameter.Relationship between the mode of failure,the average bond strength and the average bond strength-slip for each rebar was analyzed.Results show that the failure mode of all specimens is the shearing off or desquamation of ribs,no splitting cracks appear on the cube specimens.The bond stress of deformed GFRP rebars mainly depends on the mechanical interaction between the ribs of the bar and the surrounding concrete,and the bond strength of deformed GFRP rebars is improved obviously.The optimal rib spacing is less than 2.5 times of the rebar diameter,and the rib height is more than 3% of the rebar diameter.展开更多
Fe-Ni-Cr alloy powders with and without 0.4% CeO_2 were flame sprayed on the surface of 1045 carbon steel substrate. The effect of rare earth oxide CeO_2 on the interface layer and microstructure was investigated by X...Fe-Ni-Cr alloy powders with and without 0.4% CeO_2 were flame sprayed on the surface of 1045 carbon steel substrate. The effect of rare earth oxide CeO_2 on the interface layer and microstructure was investigated by X-ray diffraction analysis, SEM and EDS. Based on our previous work, comparison on the microstructure of a Fe-Ni-Cr alloy with and without 0.4% CeO_2 addition was made. The correlation between the microstructure and bond strength was studied. The addition of CeO_2 in Fe-Ni-Cr alloy shows promise results for providing good bonding strength as well as tribological properties. The results show that the hardness of the coatings can be improved by addition of 0.4% CeO_2, and the shape of powders is more spheroidal. The combination of three aspects, namely small, well-distributed microstructure, the well-distributed matrix and promotion of diffusion leads to the improvement in bond strength of Fe-Ni-Cr alloy with addition of 0.4% CeO_2.展开更多
The concept of resonance-assisted hydrogen bonds(RAHBs)highlights the synergistic interplay between theπ-resonance and hydrogen bonding interactions.This concept has been well-accepted in academia and is widely used ...The concept of resonance-assisted hydrogen bonds(RAHBs)highlights the synergistic interplay between theπ-resonance and hydrogen bonding interactions.This concept has been well-accepted in academia and is widely used in practice.However,it has been argued that the seemingly enhanced intramolecular hydrogen bonding(IMHB)in unsaturated compounds may simply be a result of the constraints imposed by theσ-skeleton framework.Thus,it is crucial to estimate the strength of IMHBs.In this work,we used two approaches to probe the resonance effect and estimate the strength of the IMHBs in the two exemplary cases of the enol forms of acetylacetone and o-hydroxyacetophenone.One approach is the block-localized wavefunction(BLW)method,which is a variant of the ab initio valence bond(VB)theory.Using this approach,it is possible to derive the geometries and energetics with resonance shut down.The other approach is Edmiston’s truncated localized molecular orbital(TLMO)technique,which monitors the energy changes by removing the delocalization tails from localized molecular orbitals.The integrated BLW and TLMO studies confirmed that the hydrogen bonding in these two molecules is indeed enhanced byπ-resonance,and that this enhancement is not a result ofσconstraints.展开更多
To develop a smelting process for the comprehensive utilization of high-chromium vanadium-titanium magnetite(HCVTM),the micro-sinter test was applied to investigate the influence of basicity and temperature on the HCV...To develop a smelting process for the comprehensive utilization of high-chromium vanadium-titanium magnetite(HCVTM),the micro-sinter test was applied to investigate the influence of basicity and temperature on the HCVTM sinters.The bonding phase strength(BS) was tested via an electronic universal testing machine.The phase transformations of the HCVTM sinters were detected via X-ray diffraction(XRD),whereas the structure and mineralogy of the HCVTM sinters under different temperatures and basicities were detected via scanning electron microscopy in combination with energy-dispersive spectroscopy(SEM–EDS).Our results demonstrate that the BS of the HCVTM sinters exhibits a slightly increasing tendency with an increase in temperature when the basicity is 2.4 and within the range of 2.8–4.0.Many cracks,small size crystals,and dependent phase structures are generated by increasing the sinter basicity.The BS is lower than 4000 N when the basicity is 2.2 and 2.8.When the temperature is in the range of 1280–1300?C,the BS exceeds 4000 N with the basicity of 2.0,2.4,and 3.4–4.0.The pore size of the HCVTM sinters increases with the increase of the temperature.The perovskite decreases,whereas the silicate phase increases with basicity higher than 3.2.This study provides theoretical and technical foundations for the effective production of HCVTM sinters.展开更多
Internal bond (IB) strength is one of the most important me- chanical properties that indicate particleboard quality. The aim of this study was to find a simple regression model that considers the most important par...Internal bond (IB) strength is one of the most important me- chanical properties that indicate particleboard quality. The aim of this study was to find a simple regression model that considers the most important parameters that can influence on IB strength. In this study, IB strength was predicted by three kinds of equations (linear, quadratic, and exponential) that were based on the percentage of adhesive (8%, 9.5%, and 11%), particle size (+5, -5 +8, -8 12, and -12 mesh), and density (0.65, 0.7, and 0.75 g/cm3). Our analysis of the results (using SHAZAM 9 software) showed that the exponential function best fitted the experi- mental data and predicted the IB strength with 18~,/0 error. In order de- crease the error percentage, the Buckingham Pi theorem was used to build regression models for predicting IB strength based on particle size,展开更多
During the aluminum wire wedge bonding, the ultrasonic power and bonding strength were obtained. Based on those data, the relationship between ultrasonic power and bonding strength was studied. The results show that: ...During the aluminum wire wedge bonding, the ultrasonic power and bonding strength were obtained. Based on those data, the relationship between ultrasonic power and bonding strength was studied. The results show that: 1) ultrasonic power is affected by ultrasonic power ratio and other uncontrolled factors such as asymmetric substrate quality, unstable restriction on the interface between wedge tool and aluminum wire; 2) when ultrasonic power is less than 1.0 W, increasing ultrasonic power leads to increasing bonding strength and decreasing failure bonding; on the contrary, when ultrasonic power is greater than 1.6 W, increasing power leads to decreasing bonding strength and increasing failure bonding; 3) only when ultrasonic power is between 1.0 W and 1.6 W, can stable and high yield bonding be reached. Finally, the microstructure of bonding interface was observed, and a ring-shaped bond pattern is founded in the center and friction scrape besides the ring area.展开更多
We sought to evaluate immediate and delayed micro-tensile bond strength of Panavia F2.0 and Multilink Sprint resin cement to superficial, deep and cervical dentin. Thirty-six freshly extracted non-carious human molars...We sought to evaluate immediate and delayed micro-tensile bond strength of Panavia F2.0 and Multilink Sprint resin cement to superficial, deep and cervical dentin. Thirty-six freshly extracted non-carious human molars were sectioned in the mesiodistal direction to expose three different dentin regions including superficial dentin (1 mm below the dentine-enamel junction), deep dentin (1 mm above the highest pulp horn) and cervical dentin (0.5 mm above the cemento-enamel junction and 0.5 mm below the dentine-enamel junction). Resin cements were applied on dentin surfaces and composite blocks were luted under constant seating pressure. Each group was divided into three subgroups according to time intervals. Specimens were sectioned to obtain sticks of 1 mm2 in diameter and subjected to microtensile bond strength testing at a cross head speed of 1 mrn/min. Both resin cements showed higher micro-tensile bond strength to superficial dentin than that to deep or cervical dentin (P 〈 0.001). Micro-ten- sile bond strengths of Panavia F2.0 were higher than those of Multilink Sprint at different dentin regions (P 〈 0.001). Immediate "micro-tensile bond strengths were higher than those of delayed micro-tensile bond strengths for both resin cements (P 〈 0.001). It was concluded that resin cements with different chemical formulations and applications yield significantly different micro-tensile bond strengths to different dentin regions.展开更多
Fluororesin-based anti-corrosive coatings including graded FEP/PPS were prepared on carbon steel by melt powder coating, the bonding strength of all coating systems was determined by the pull-off test. It is found tha...Fluororesin-based anti-corrosive coatings including graded FEP/PPS were prepared on carbon steel by melt powder coating, the bonding strength of all coating systems was determined by the pull-off test. It is found that the poor adhesion of fluororesin coatings to metallic substrates is improved obviously by the graded coating structure of FEP/PPS, and the bonding strength reaches up to 11.8 MPa for the five-layer system. Examination by electron probe microanalysis (EPMA) verifies that the distribution of main components is graded in the five-layer system, which is responsible for the enhancement of the interfacial bonding.展开更多
One of the key problems by diffusion-rolling bonding with small reduction for carbon steel plates is the bonding assistant coat. Abonding assitant coat used below 850℃ was developed. It contained copper as basic elem...One of the key problems by diffusion-rolling bonding with small reduction for carbon steel plates is the bonding assistant coat. Abonding assitant coat used below 850℃ was developed. It contained copper as basic element and zinc as main alloy element. Other small elements and rear metals were added to decrease the melting point and to obtain a better clouding and bigh plasticity. Based on the theory of brazing and transient liquid diffusion welding, two carbon steel plates were rolled with small reduction by using self-made bonding assistant coat. Temperature, pressure and holding time are the main technology parameters for controlling the process of diffusion-rolling. The results show that the bonding strength is the greatest when the bonding temperature is 830℃, holding time is 3 min and the reduction rate is 9%.展开更多
The diffusion bonding of AZ31B Mg alloy and Q235 steel was investigated with a Zn-5Al alloy as interlayer and under different holding time ranging from 3 to 1 200 s. The microstructure and phase compositions of bonded...The diffusion bonding of AZ31B Mg alloy and Q235 steel was investigated with a Zn-5Al alloy as interlayer and under different holding time ranging from 3 to 1 200 s. The microstructure and phase compositions of bonded joints were characterized by scanning electron microscopy( SEM),energy dispersive spectrometer( EDS) and X-ray diffraction( XRD)methods. The shear strength of Mg alloy/steel joints was measured by tensile tester. It was found that the microstructure of bonded joints evolved dramatically along with the prolongation of holding time. Under the holding time of 3 s,the main part of joint was composed of MgZn_2 phase and dispersed Al-rich solid solution particles. When increased the holding time more than 60 s,the excessive solution of AZ31B into the interfacial reaction area led to the formation of coarse phase and eutectic microstructure,and also the complex Fe-Al and Mg-Al-Zn IMCs at transition layer closed to Q235 steel side. According to the tensile testing characterizations,the joints obtained under holding time of 3 s exhibited the best shear strength of 84 MPa,and the fracture occurred at the intermediary part of joint where the flexible Al-rich solid solution particles could help to impede the microcrack propagations. With prolonging the holding time to 600 s,the shear strength of joints was deteriorated enormously and the fracture position was shifted to the transition layer part closed to Q235 steel.展开更多
Al Pb alloy strips and hot dip aluminized steel sheets were successfully bonded together by hot rolling, and the interfacial bonding strengths after rolling was evaluated by a new method. The bonding modes were studie...Al Pb alloy strips and hot dip aluminized steel sheets were successfully bonded together by hot rolling, and the interfacial bonding strengths after rolling was evaluated by a new method. The bonding modes were studied by optical and scanning electron microscope and energy dispersive X ray analysis, and the effects of the thickness of the intermetallic layers and the Si content in hot dip aluminized layers on the interfacial bonding strength were also investigated respectively. It is found that the hot dipped steel and Al Pb alloy are bonded through blank interface bonding and block interface bonding, and the total bonding strength mainly depends on that of blank interfaces and the fraction of blank interfaces. There is a linear relationship between the total bonding strength F and the fraction of blank interfaces K b. The bonding strength varies with the Si content in the hot dipped aluminized layers on the surface of steel sheets, the fraction of blank interfaces and the rotation of the intermetallic blocks. [展开更多
基金This work was financially supported by the National Nature Science Foundation of China(Grant No.61673222)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.23KJB430036)Wuxi University Research Start-up Fund for Introduced Talents(Grant No.2022r036).
文摘High-quality bonding of 4-inch GaAs and Si is achieved using plasma-activated bonding technology.The influence of Ar plasma activation on surface morphology is discussed.When the annealing temperature is 300℃,the bonding strength reaches a maximum of 6.2 MPa.In addition,a thermal stress model for GaAs/Si wafers is established based on finite element analysis to obtain the distribution of equivalent stress and deformation variables at different temperatures.The shape varia-tion of the wafer is directly proportional to the annealing temperature.At an annealing temperature of 400℃,the maximum protrusion of 4 inches GaAs/Si wafers is 3.6 mm.The interface of GaAs/Si wafers is observed to be dense and defect-free using a transmission electron microscope.The characterization of interface elements by X-ray energy dispersion spectroscopy indi-cates that the elements at the interface undergo mutual diffusion,which is beneficial for improving the bonding strength of the interface.There is an amorphous transition layer with a thickness of about 5 nm at the bonding interface.The preparation of Si-based GaAs heterojunctions can enrich the types of materials required for the development of integrated circuits,improve the performance of materials and devices,and promote the development of microelectronics technology.
文摘Aim To evaluate the interactive effects of different self- adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 μm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment - silica coating + silanization. Specimens were stored in distilled water at 37℃ for 24 hours before testing shear bond strength. Results Silica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, B1, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP- containing self-adhesive resin cement CL had the highest bond strengths to zirconia. Conclusion Applying silica coating and tribochemical treatment improved the bond strength of self-adhesive resin cement to zirconia, especially for CL.
基金Project (No. 200431882021) supported by the Western Communi-cation Construction and Science & Technological Project,China
文摘Based on the Canadian Standards Association (CSA) criteria,105 pullout specimens were tested to investigate the effect of different rib geometries on bond strength of glass fiber reinforced polymer (GFRP) rebars embedded in concrete. Two kinds of conventional reinforcing rebars were also studied for comparison. Each rebar was embedded in a 150 mm concrete cube,with the embedded length being four times the rebar diameter. The experimental parameters were the rebar type,rebar component,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Theoretical analysis was also carried out to explain the experimental phenomena and results. The experimental and theoretical results indicated that the bond strength of GFRP rebars was about 13%~35% lower than that of steel rebars. The bond strength and bond-slip behavior of the specially machined rebars varied with the rebar type,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Using the results,design recom-mendations were made concerning optimum rib geometries of GFRP ribbed rebars with superior bond-slip characteristics,which concluded that the optimal rib spacing of ribbed rebars is the same as the rebar diameter,and that the optimal rib height is 6% of the rebar diameter.
基金the National Natural Science Foundation of China(No.50479059)
文摘The effect of freezing and thawing cycles on mechanical properties of concrete (compressive, splitting tensile strength) was experimentally investigated. According to the pullout test data of three kinds of deformed steel bars, the bond stress-slip curves after freezing and thawing were obtained. The empirical equations of peak bond strength were proposed that the damage accounted for effects of freezing and thawing cycle. Meanwhile, the mechanism of bond deterioration between steel bars and concrete after freezing and thawing cycles was discussed. All these conclusions will be useful to the durability design and reliability calculation of RC structures in cold region.
基金provided financial assistance by Jilin Province Health Department (2010z016)
文摘In this study, we evaluate the influence of post surface pre-treatments on the bond strength of four different cements to glass fiber posts. Eighty extracted human maxillary central incisors and canines were endodontically treated and standardized post spaces were prepared. Four post pre-treatments were tested: (i) no pre-treatment (NS, control), (ii) sandblasting (SA), (iii) silanization (SI) and (iv) sandblasting followed by silanization (SS). Per pre-treatment, four dual-cure resin cements were used for luting posts: DMG LUXACORE Smartmix Dual, Multilink Automix, RelyX Unicem and Panavia F2.0. All the specimens were subjected to micro push-out test. Two-way analysis of variance and Tukey post hoc tests were performed (α=0.05) to analyze the data. Bond strength was significantly affected by the type of resin cement, and bond strengths of RelyX Unicem and Panavia F2.0 to the fiber posts were significantly higher than the other cement groups. Sandblasting significantly increased the bond strength of DMG group to the fiber posts.
文摘The effect of steel corrosion on the behavior of bond between steel and the surrounding concrete was investigated. Pullout tests were carried out to demonstrate bond stress-slip response for reinforcing steel bars of a series of corrosion level. Specimens either confined or unconfined were investigated for evaluation of the effect of confinement on bond strength and failure mode. Also, the tests were analyzed using nonlinear finite element analysis. It was shown that for both confined and unconfined steel bars, bond strength generally decreases as the corrosion level increases when corrosion level is relatively high. Confinement was demonstrated to provide excellent means to conteract bond loss for corroded reinforcing steel bars. It was shown that unconfined specimens generally split at a small slip with a large crack width and result in splitting failure while confined specimens contribute to a small crack width and generally cause a pullout failure. The analysis results agree reasonably well with the experiments.
文摘The effect of saliva contamination on the shear bond strength of orthodontic brackets, at various stages of the bonding procedure using a new self-etch primer was studied. The samples were divided into 4 groups according to 4 different enamel surface conditions: Group A: dry; Group B: saliva contamination before priming; Group C: saliva contamination after priming, and Group D: saliva contamination before and after priming. Stainless steel brackets were bonded in each test group with a light-cured composite resin (TransbondXT 3M). The shear bond strength was determined in the first 30 min after bonding. The analysis of variance indicated that the shear bond strengths of the 4 groups were significantly different (F=11.89, P<0.05). Tukey HSD tests indicated that contamination both before and after the application of the acid-etch primer resulted in a significantly lower (=4.6±1.7 MPa) shear bond strength than either the control group (=8.8±1.9 MPa) or the groups where contamination occurred either before (=7.9±2.0 MPa) or after (=6.9±1.5 MPa) the application of the primer. It was concluded that the new acid-etch primer could maintain adequate shear bond strength if contamination occurred either before or after the application of the primer. On the other hand, contamination both before and after the application of the primer could significantly reduce the shear bond strength of orthodontic brackets.
基金Project (51474189) supported by the National Natural Science Foundation of ChinaProject (E2018203446) supported by the Excellent Youth Foundation of Hebei Scientific Committee,ChinaProject (QN2015214) supported by the Educational Commission of Hebei Province,China
文摘Based on traditional twin-roll casting process,Invar/Cu clad strips were successfully fabricated by using solid Invar alloy strip and molten Cu under conditions of high temperature,high pressure and plastic deformation.A series of tests including tensile test,bending test,T-type peeling test and scanning electron microscope(SEM)and energy dispersive spectrometer(EDS)measurements were carried out to analyze the mechanical properties of Invar/Cu clad strips and the micro-morphology of tensile fracture surfaces and bonding interfaces.The results indicate that no delamination phenomenon occurs during the compatible deformation of Invar/Cu in bending test and only one stress platform exists in the tensile stress-strain curve when the bonding strength is large.On the contrary,different mechanical properties of Invar and Cu lead to delamination phenomenon during the uniaxial tensile test,which determines that two stress platforms occur on the stress-strain curve of Invar/Cu clad strips when two elements experience necking.The average peeling strength can be increased from13.85to42.31N/mm after heat treatment at800℃for1h,and the observation of the Cu side at peeling interface shows that more Fe is adhered on the Cu side after the heat treatment.All above illustrate that heat treatment can improve the strength of the bonding interface of Invar/Cu clad strips.
基金Funded by the Natural Science Foundation of Hubei Province(No.2012FFB04416)
文摘The purpose of this study was to evaluate the long time antibacterial properties and shear bond strength of experimental nano silver-containing cements (NSC). Nano silver base inorganic antibacterial powder was added to the reinforced glass ionomer cement at five different weight ratios to obtain a series of nano silver-containing cements, then the antibacterial properties of three orthodontic cement products and five NSC samples were evaluated by the direct contact test (DCT) and the agar diffusion test (ADT). The DCT, which was based on turbidness determination of bacterial growth in 96-well microtiter plates, was performed in both fresh and aged for 1 day, 1 week, 2 weeks, 3 weeks, 4 weeks, 6 weeks, and 8 weeks tested materials. The shear bond strengthes of three orthodontic cement products and five NSC samples were examined using a universal testing machine. The ADT results indicated that there were no significant differences between NSCs and ORTHO LC fresh specimens. In the DCT experiment, all fresh silver nanoparticles-containing tested samples presented powerful antibacterial properties, but they gradually lost the effective antimicrobial agents with the extension of aging time. Finally, none of the tested materials maintained its antibacterial property after aging for 8 weeks. A gradually decreasing trend of bond strength presented with the increasing incorporation of nano silver base inorganic antibacterial powder into the glass ionomer cement, even though all the tested material specimens reached the ideal bond strength range. We may conclude that NSCs can contribute to decrease the demineralization rate around brackets without compromising bond strength.
基金Sponsored by the Western Communication Construction and Science & Technological Project(Grant No.200431882021)the National Science Fundfor Distinguished Young Scholars (Grant No.50525823)
文摘Based on the Canadian Standards Association(CSA) criterion,experiments on 30 pull-out specimens were conducted to study the bond strength of deformed GFRP rebars with 8 different surface configurations.Each rebar was embedded in a 150 mm concrete cube,and the test embedded length was four times of the rebar diameter.Relationship between the mode of failure,the average bond strength and the average bond strength-slip for each rebar was analyzed.Results show that the failure mode of all specimens is the shearing off or desquamation of ribs,no splitting cracks appear on the cube specimens.The bond stress of deformed GFRP rebars mainly depends on the mechanical interaction between the ribs of the bar and the surrounding concrete,and the bond strength of deformed GFRP rebars is improved obviously.The optimal rib spacing is less than 2.5 times of the rebar diameter,and the rib height is more than 3% of the rebar diameter.
基金Project supported by the National Science Foundation of Gansu Province of China (ZS031-A25-018G)
文摘Fe-Ni-Cr alloy powders with and without 0.4% CeO_2 were flame sprayed on the surface of 1045 carbon steel substrate. The effect of rare earth oxide CeO_2 on the interface layer and microstructure was investigated by X-ray diffraction analysis, SEM and EDS. Based on our previous work, comparison on the microstructure of a Fe-Ni-Cr alloy with and without 0.4% CeO_2 addition was made. The correlation between the microstructure and bond strength was studied. The addition of CeO_2 in Fe-Ni-Cr alloy shows promise results for providing good bonding strength as well as tribological properties. The results show that the hardness of the coatings can be improved by addition of 0.4% CeO_2, and the shape of powders is more spheroidal. The combination of three aspects, namely small, well-distributed microstructure, the well-distributed matrix and promotion of diffusion leads to the improvement in bond strength of Fe-Ni-Cr alloy with addition of 0.4% CeO_2.
文摘The concept of resonance-assisted hydrogen bonds(RAHBs)highlights the synergistic interplay between theπ-resonance and hydrogen bonding interactions.This concept has been well-accepted in academia and is widely used in practice.However,it has been argued that the seemingly enhanced intramolecular hydrogen bonding(IMHB)in unsaturated compounds may simply be a result of the constraints imposed by theσ-skeleton framework.Thus,it is crucial to estimate the strength of IMHBs.In this work,we used two approaches to probe the resonance effect and estimate the strength of the IMHBs in the two exemplary cases of the enol forms of acetylacetone and o-hydroxyacetophenone.One approach is the block-localized wavefunction(BLW)method,which is a variant of the ab initio valence bond(VB)theory.Using this approach,it is possible to derive the geometries and energetics with resonance shut down.The other approach is Edmiston’s truncated localized molecular orbital(TLMO)technique,which monitors the energy changes by removing the delocalization tails from localized molecular orbitals.The integrated BLW and TLMO studies confirmed that the hydrogen bonding in these two molecules is indeed enhanced byπ-resonance,and that this enhancement is not a result ofσconstraints.
基金financially supported by the National Basic Research Program of China (No.2013CB632603)the National Key Technology R&D Program of China (No.2015BAB19B02)the National Natural Science Foundation of China (Nos.51674084,51174051,and 51574082)
文摘To develop a smelting process for the comprehensive utilization of high-chromium vanadium-titanium magnetite(HCVTM),the micro-sinter test was applied to investigate the influence of basicity and temperature on the HCVTM sinters.The bonding phase strength(BS) was tested via an electronic universal testing machine.The phase transformations of the HCVTM sinters were detected via X-ray diffraction(XRD),whereas the structure and mineralogy of the HCVTM sinters under different temperatures and basicities were detected via scanning electron microscopy in combination with energy-dispersive spectroscopy(SEM–EDS).Our results demonstrate that the BS of the HCVTM sinters exhibits a slightly increasing tendency with an increase in temperature when the basicity is 2.4 and within the range of 2.8–4.0.Many cracks,small size crystals,and dependent phase structures are generated by increasing the sinter basicity.The BS is lower than 4000 N when the basicity is 2.2 and 2.8.When the temperature is in the range of 1280–1300?C,the BS exceeds 4000 N with the basicity of 2.0,2.4,and 3.4–4.0.The pore size of the HCVTM sinters increases with the increase of the temperature.The perovskite decreases,whereas the silicate phase increases with basicity higher than 3.2.This study provides theoretical and technical foundations for the effective production of HCVTM sinters.
文摘Internal bond (IB) strength is one of the most important me- chanical properties that indicate particleboard quality. The aim of this study was to find a simple regression model that considers the most important parameters that can influence on IB strength. In this study, IB strength was predicted by three kinds of equations (linear, quadratic, and exponential) that were based on the percentage of adhesive (8%, 9.5%, and 11%), particle size (+5, -5 +8, -8 12, and -12 mesh), and density (0.65, 0.7, and 0.75 g/cm3). Our analysis of the results (using SHAZAM 9 software) showed that the exponential function best fitted the experi- mental data and predicted the IB strength with 18~,/0 error. In order de- crease the error percentage, the Buckingham Pi theorem was used to build regression models for predicting IB strength based on particle size,
基金Projects(50390064, 50675227) supported by the National Natural Science Foundation of ChinaProject(2003CB716202) supported by the National Basic Research Program of China
文摘During the aluminum wire wedge bonding, the ultrasonic power and bonding strength were obtained. Based on those data, the relationship between ultrasonic power and bonding strength was studied. The results show that: 1) ultrasonic power is affected by ultrasonic power ratio and other uncontrolled factors such as asymmetric substrate quality, unstable restriction on the interface between wedge tool and aluminum wire; 2) when ultrasonic power is less than 1.0 W, increasing ultrasonic power leads to increasing bonding strength and decreasing failure bonding; on the contrary, when ultrasonic power is greater than 1.6 W, increasing power leads to decreasing bonding strength and increasing failure bonding; 3) only when ultrasonic power is between 1.0 W and 1.6 W, can stable and high yield bonding be reached. Finally, the microstructure of bonding interface was observed, and a ring-shaped bond pattern is founded in the center and friction scrape besides the ring area.
文摘We sought to evaluate immediate and delayed micro-tensile bond strength of Panavia F2.0 and Multilink Sprint resin cement to superficial, deep and cervical dentin. Thirty-six freshly extracted non-carious human molars were sectioned in the mesiodistal direction to expose three different dentin regions including superficial dentin (1 mm below the dentine-enamel junction), deep dentin (1 mm above the highest pulp horn) and cervical dentin (0.5 mm above the cemento-enamel junction and 0.5 mm below the dentine-enamel junction). Resin cements were applied on dentin surfaces and composite blocks were luted under constant seating pressure. Each group was divided into three subgroups according to time intervals. Specimens were sectioned to obtain sticks of 1 mm2 in diameter and subjected to microtensile bond strength testing at a cross head speed of 1 mrn/min. Both resin cements showed higher micro-tensile bond strength to superficial dentin than that to deep or cervical dentin (P 〈 0.001). Micro-ten- sile bond strengths of Panavia F2.0 were higher than those of Multilink Sprint at different dentin regions (P 〈 0.001). Immediate "micro-tensile bond strengths were higher than those of delayed micro-tensile bond strengths for both resin cements (P 〈 0.001). It was concluded that resin cements with different chemical formulations and applications yield significantly different micro-tensile bond strengths to different dentin regions.
文摘Fluororesin-based anti-corrosive coatings including graded FEP/PPS were prepared on carbon steel by melt powder coating, the bonding strength of all coating systems was determined by the pull-off test. It is found that the poor adhesion of fluororesin coatings to metallic substrates is improved obviously by the graded coating structure of FEP/PPS, and the bonding strength reaches up to 11.8 MPa for the five-layer system. Examination by electron probe microanalysis (EPMA) verifies that the distribution of main components is graded in the five-layer system, which is responsible for the enhancement of the interfacial bonding.
文摘One of the key problems by diffusion-rolling bonding with small reduction for carbon steel plates is the bonding assistant coat. Abonding assitant coat used below 850℃ was developed. It contained copper as basic element and zinc as main alloy element. Other small elements and rear metals were added to decrease the melting point and to obtain a better clouding and bigh plasticity. Based on the theory of brazing and transient liquid diffusion welding, two carbon steel plates were rolled with small reduction by using self-made bonding assistant coat. Temperature, pressure and holding time are the main technology parameters for controlling the process of diffusion-rolling. The results show that the bonding strength is the greatest when the bonding temperature is 830℃, holding time is 3 min and the reduction rate is 9%.
基金financially supported by National Natural Science Foundation of China(Grant No.51104027)the Doctoral Fund of Ministry of Education of China(20112124120004)
文摘The diffusion bonding of AZ31B Mg alloy and Q235 steel was investigated with a Zn-5Al alloy as interlayer and under different holding time ranging from 3 to 1 200 s. The microstructure and phase compositions of bonded joints were characterized by scanning electron microscopy( SEM),energy dispersive spectrometer( EDS) and X-ray diffraction( XRD)methods. The shear strength of Mg alloy/steel joints was measured by tensile tester. It was found that the microstructure of bonded joints evolved dramatically along with the prolongation of holding time. Under the holding time of 3 s,the main part of joint was composed of MgZn_2 phase and dispersed Al-rich solid solution particles. When increased the holding time more than 60 s,the excessive solution of AZ31B into the interfacial reaction area led to the formation of coarse phase and eutectic microstructure,and also the complex Fe-Al and Mg-Al-Zn IMCs at transition layer closed to Q235 steel side. According to the tensile testing characterizations,the joints obtained under holding time of 3 s exhibited the best shear strength of 84 MPa,and the fracture occurred at the intermediary part of joint where the flexible Al-rich solid solution particles could help to impede the microcrack propagations. With prolonging the holding time to 600 s,the shear strength of joints was deteriorated enormously and the fracture position was shifted to the transition layer part closed to Q235 steel.
文摘Al Pb alloy strips and hot dip aluminized steel sheets were successfully bonded together by hot rolling, and the interfacial bonding strengths after rolling was evaluated by a new method. The bonding modes were studied by optical and scanning electron microscope and energy dispersive X ray analysis, and the effects of the thickness of the intermetallic layers and the Si content in hot dip aluminized layers on the interfacial bonding strength were also investigated respectively. It is found that the hot dipped steel and Al Pb alloy are bonded through blank interface bonding and block interface bonding, and the total bonding strength mainly depends on that of blank interfaces and the fraction of blank interfaces. There is a linear relationship between the total bonding strength F and the fraction of blank interfaces K b. The bonding strength varies with the Si content in the hot dipped aluminized layers on the surface of steel sheets, the fraction of blank interfaces and the rotation of the intermetallic blocks. [