Ten specimens were tested in this paper in order to study the bond behavior and the process of force transfer when bars adhered to mortar. The development of the bond stress between bars and mortar was calculated. Tes...Ten specimens were tested in this paper in order to study the bond behavior and the process of force transfer when bars adhered to mortar. The development of the bond stress between bars and mortar was calculated. Test results show that the maximum bond-stress is not influenced by the bar bond length and increases as the increased splitting strength of mortar for block. The local bond stress-slip curve was obtained. Then,based on the regressive analysis of test data,two bond shearing stress-slip constitutive models between bars and mortar were proposed. The models can be used in the numerical simulation or finite element analysis and provide references for the improvement of the corresponding design codes.展开更多
On August 8,2017,an M_(W)6.5 earthquake occurred in Jiuzhaigou County,Sichuan Province,China,on the eastern margin of the Qinghai-Tibet Plateau.This study investigates the coseismic deformation field and fault model w...On August 8,2017,an M_(W)6.5 earthquake occurred in Jiuzhaigou County,Sichuan Province,China,on the eastern margin of the Qinghai-Tibet Plateau.This study investigates the coseismic deformation field and fault model with ascending and descending Sentinel-1 synthetic aperture radar(SAR)images,aftershock distribution,and elastic half-space dislocation model.The regional fault slip pattern is then quantita-tively examined using the boundary element method.The results show that the ascending and descending interferometric synthetic aperture radar(InSAR)coseismic deformation fields display an overall NNW-SSE trend,with more significant deformation on the southwest side of the fault.The coseismic fault geometry is divided into NW and SE sub-faults with strikes of 162.1°and 149.3°,respectively.The coseismic fault slip is dominated by a left-lateral strike-slip movement with an average rake of-2.31°,mainly occurring at a depth of 0-13.04 km with a shape of an approximately inverted triangle.The fault slip features two peak slip zones,with a maximum of 1.39 m.The total seismic moment is 6.34×10^(18) N·m(M_(W)6.47).The boundary element calculation quantitatively indicates that the regional fault slip pattern may be mainly attributable to the changing strike and dip.The strike changes from NNWeSSE to nearly NS direction,and the dip gradually decreases from the Jiuzhaigou earthquake fault in the north to the Huya fault in the south.With these characteristics,the Huya and the Jiuzhaigou earthquake faults form the eastern boundary of the Minshan uplift zone and accommodate the accumulated deformation.展开更多
Different slip models were used for prediction of r value of BCC metal sheets from ODF coefficients.According to the maximum plastic work theory developed by Bishop and Hill,it is expected that the higher of Taylor fa...Different slip models were used for prediction of r value of BCC metal sheets from ODF coefficients.According to the maximum plastic work theory developed by Bishop and Hill,it is expected that the higher of Taylor factors given by a slip’ model,the better prediction obtained based on the model.From this point of view,a composed slip model of BCC metals was presented.Based on the model,the agreement of predicted r values for deep drawing steels with experimental ones is excellent.展开更多
Nanoparticle(drug particle) dispersion is an important phenomenon during nanodrug delivery in the bloodstream by using multifunctional carrier particles. The aim of this study is to understand the dispersion of drug p...Nanoparticle(drug particle) dispersion is an important phenomenon during nanodrug delivery in the bloodstream by using multifunctional carrier particles. The aim of this study is to understand the dispersion of drug particle(nanoparticle) transport during steady blood flow through a microvessel. A two-phase fluid model is considered to define blood flow through a microvessel. Plug and intermediate regions are defined by a non-Newtonian Herschel-Bulkley fluid model where the plug region appears due to the aggregation of red blood cells at the axis in the vessel. The peripheral(porous in nature)region is defined by the Newtonian fluids. The wall of the microvessel is considered to be permeable and characterized by the Darcy model. Stress-jump and velocity slip conditions are incorporated respectively at the interface of the intermediate and peripheral regions and at the inner surface of the microvessel. The effects of the rheological parameter, the pressure constant, the particle volume fraction, the stress jump constant, the slip constant,and the yield stress on the dispersion are analyzed and discussed. It is observed that the non-dimensional pressure gradient and the yield stress enhance the dispersion rate of the nanoparticle, while the opposite trends are observed for the velocity slip constant, the nanoparticle volume fraction, the rheological parameter, and the stress-jump constant.展开更多
The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In th...The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In this process, source parameters were treated as normal random variables, and the Fortran code of hybrid slip model was modified by adding a random number generator so that the code could generate many finite fault models with different dimensions and slip distributions for a given magnitude.Furth...展开更多
A polymeric gel is an aggregate of polymers and solvent molecules, which can retain its shape after a large deformation. The deformation behavior of polymeric gels was often described based on the Flory-Rehner free en...A polymeric gel is an aggregate of polymers and solvent molecules, which can retain its shape after a large deformation. The deformation behavior of polymeric gels was often described based on the Flory-Rehner free energy function without considering the influence of chain entanglements on the mechanical behavior of gels. In this paper,a new hybrid free energy function for gels is formulated by combining the EdwardsVilgis slip-link model and the Flory-Huggins mixing model to quantify the time-dependent concurrent process of large deformation and mass transport. The finite element method is developed to analyze examples of swelling-induced deformation. Simulation results are compared with available experimental data and show good agreement. The influence of entanglements on the time-dependent deformation behavior of gels is also demonstrated.The study of large deformation kinetics of polymeric gel is useful for diverse applications.展开更多
Most of the earthquake faults in North-East India, China, mid Atlantic-ridge, the Pacific seismic belt and Japan are found to be predominantly dip-slip in nature. In the present paper a dip-slip fault is taken situate...Most of the earthquake faults in North-East India, China, mid Atlantic-ridge, the Pacific seismic belt and Japan are found to be predominantly dip-slip in nature. In the present paper a dip-slip fault is taken situated in an elastic layer over a viscoelastic half space representing the lithosphere-asthenosphere system. A movement of the dip-slip nature across the fault occurs when the accumulated stress due to various tectonic reasons e.g. mantle convection etc., exceeds the local friction and cohesive forces across the fault. The movement is assumed to be slipping in nature, expressions for displacements, stresses and strains are obtained by solving associated boundary value problem with the help of integral transformation and Green’s function method and a suitable numerical methods is used for computation. A detailed study of these expressions may give some ideas about the nature of stress accumulation in the system, which in turn will be helpful in formulating an earthquake prediction programme.展开更多
The Norwegian Public Roads Administration(NPRA) is planning for an upgrade of the E39 highway route at the westcoast of Norway. Fixed links shall replace ferries at seven fjord crossings. Wide spans and large depths a...The Norwegian Public Roads Administration(NPRA) is planning for an upgrade of the E39 highway route at the westcoast of Norway. Fixed links shall replace ferries at seven fjord crossings. Wide spans and large depths at the crossings combined with challenging subsea topography and environmental loads call for an extension of existing practice. A variety of bridge concepts are evaluated in the feasibility study. The structures will experience significant loads from deadweight, traffic and environment. Anchoring of these forces is thus one of the challenges met in the project. Large-size subsea rock anchors are considered a viable alternative. These can be used for anchoring of floating structures but also with the purpose of increasing capacity of fixed structures. This paper presents first a thorough study of factors affecting rock anchor bond capacity. Laboratory testing of rock anchors subjected to cyclic loading is thereafter presented. Finally, the paper presents a model predicting the capacity of a rock anchor segment, in terms of a ribbed bar, subjected to a cyclic load history. The research assumes a failure mode occurring in the interface between the rock anchor and the surrounding grout. The constitutive behavior of the bonding interface is investigated for anchors subjected to cyclic one-way tensile loads. The model utilizes the static bond capacity curve as a basis, defining the ultimate bond sbuand the slip s1 at τ. A limited number of input parameters are required to apply the model. The model defines the bond-slip behavior with the belonging rock anchor capacity depending on the cyclic load level(τcy/τ), the cyclic load ratio(R= τcy/τcy), and the number of load cycles(N). The constitutive model is intended to model short anchor lengths representing an incremental length of a complete rock anchor.展开更多
The stability of rock slope is often controlled by the existing discontinuous surfaces, such as discrete fractures, which are ubiquitously distributing in a geological medium. In contrast with the traditional approach...The stability of rock slope is often controlled by the existing discontinuous surfaces, such as discrete fractures, which are ubiquitously distributing in a geological medium. In contrast with the traditional approaches used in soil slope with a continuous assumption, the simulation methods of jointed rock slope are different from that of in soil slope. This paper presents a study on jointed rock slope stability using the proposed discontinuous approach, which considers the effects of discrete fractures. Comparing with traditional methods to model fractures in an implicit way, the presented approach provides a method to simulate fractures in an explicit way, where grids between rock matrix and fractures are independent. To complete geometric components generation and mesh partition for the model, the corresponding algorithms were devised. To evaluate the stability state of rock slope quantitatively, the strength reduction method was integrated into our analysis framework. A benchmark example was used to verify the validation of the approach. A jointed rock slope, which contains natural fractures, was selected as a case study and was simulated regarding the workflow of our framework. It was set up in the light of the geological condition of the site. Slope stability was evaluated under different loading conditions with various fracture patterns. Numerical results show that fractures have significant contributions to slope stability, and different fracture patterns would lead to different shapes of the slip surface. The devised method has the ability to calculate a non-circular slip surface, which is different from a circular slip surface obtained by classical methods.展开更多
Estimating the spatial distribution of coseismic slip is an ill-posed inverse problem, and solutions may be extremely oscillatory due to measurement errors without any constraints on the coseismic slip distribution. I...Estimating the spatial distribution of coseismic slip is an ill-posed inverse problem, and solutions may be extremely oscillatory due to measurement errors without any constraints on the coseismic slip distribution. In order to obtain stable solution for coseismic slip inversion, regularization method with smoothness-constrained was imposed. Trade-off parameter in regularized inversion, which balances the minimization of the data misfit and model roughness, should be a critical procedure to achieve both resolution and stability. Then, the active constraint balancing approach is adopted, in which the trade-off parameter is regarded as a spatial variable at each model parameter and automatically determined via the model resolution matrix and the spread function. Numerical experiments for a synthetical model indicate that regularized inversion using active constraint balancing approach can provides stable inversion results and have low sensitivity to the knowledge of the exact character of the Gaussian noise. Regularized inversion combined with active constraint balancing approach is conducted on the 2005 Nias earthquake. The released moment based on the estimated coseismic slip distribution is 9.91×1021 N·m, which is equivalent to a moment magnitude of 8.6 and almost identical to the value determined by USGS. The inversion results for synthetic coseismic uniform-slip model and the 2005 earthquake show that smoothness-constrained regularized inversion method combined with active constraint balancing approach is effective, and can be reasonable to reconstruct coseismic slip distribution on fault.展开更多
We propose a boundary scheme for addressing multi-mechanism flow in a porous medium in slip and early transition flow regimes, which is frequently encountered in shale gas reservoirs. Micro-gaseous flow in organic-ric...We propose a boundary scheme for addressing multi-mechanism flow in a porous medium in slip and early transition flow regimes, which is frequently encountered in shale gas reservoirs. Micro-gaseous flow in organic-rich shale involves a complex flow mechanism. A self-developed boundary scheme that combines the non-equilibrium extrapolation scheme and the combined diffusive reflection and bounce-back scheme(half-way DBB) to embed the Langmuir slip boundary into the single-relaxation-time lattice Boltzmann method(SRT-LBM) enables us to describe this process, namely, the coupling effect of micro-gaseous flow and surface diffusion in organic-rich nanoscale pores. The present LBM model comes with the careful consideration of the local Knudsen number, local pressure gradient, viscosity correction model, and regularization procedure to account for the rarefied gas flows in irregular pores. Its validity and accuracy are verified by several benchmarking cases, and the calculated results by this boundary scheme accord well with our analytical solutions.This boundary scheme shows a higher accuracy than the existing studies. Additionally, a subiteration strategy is presented to tackle the coupled micro-gaseous flow and surface diffusion, which necessitates the iteration process matching of these two mechanisms. The multi-mechanism flow in the self-developed irregular pores is also numerically investigated and analyzed over a wide range of parameters. The results indicate that the present model can effectively capture the coupling effect of micro-gaseous flow and surface diffusion in a tree-like porous medium.展开更多
In consideration of the electroosmotic flow in a slit microchannel, the con-stitutive relationship of the Eyring fluid model is utilized. Navier's slip condition is used as the boundary condition. The governing equat...In consideration of the electroosmotic flow in a slit microchannel, the con-stitutive relationship of the Eyring fluid model is utilized. Navier's slip condition is used as the boundary condition. The governing equations are solved analytically, yielding the velocity distribution. The approximate expressions of the velocity distribution are also given and discussed. Furthermore, the effects of the dimensionless parameters, the electrokinetic parameter, and the slip length on the flow are studied numerically, and appropriate conclusions are drawn.展开更多
To establish bonding stress—slip constitutive model between bars and grout concrete,13 test specimens were employed to study the bonding behavior and the force transfer of bars adhered to grout concrete. The bonding ...To establish bonding stress—slip constitutive model between bars and grout concrete,13 test specimens were employed to study the bonding behavior and the force transfer of bars adhered to grout concrete. The bonding stress development of bars adhered to grout concrete was analyzed. The local bonding stress—slip curve was obtained. Based on the test results,a new bonding stress— slip constitutive model between bars and grout concrete was proposed. The results show that the maximum bonding stress is not influenced by the bar bond length,but it is strengthened when the splitting strength of grout concrete is increased. The model matches the experimental results well,and the regressing coefficient equals 1.7.展开更多
In order to improve the brake performance of a dual independent electric drive tracked vehicle,a dynamic model for braking situation was established.Then,a sliding model controller(SMC)with an auxiliary system was des...In order to improve the brake performance of a dual independent electric drive tracked vehicle,a dynamic model for braking situation was established.Then,a sliding model controller(SMC)with an auxiliary system was designed to control the slip and its effectiveness was proved.A hardware-in-loop simulation through MATLAB/XPC was compared with the normal SMC and normal integral sliding mode controller(ISMC),the results show that SMC with the auxiliary system has a better performance:a smaller overshoot and steady state error.The disturbance is suppressed effectively.In the initial speed of 65.km/h,the brake distance was shortened by 3.4%and 6.8%compared with the other two methods,respectively.Finally,initial speeds of 30-36.km/h tests was carried out on a flat soil road.Compared with a no-control brake,the displacement was shortened by 1.8.m.It demonstrates the effectiveness of the slip-control strategy.In the same situation,the error between the simulation and test is 18.1%,which validates the accuracy of models.展开更多
The optimal design of heating and cooling systems must take into account heat radiation which is a non-linear process.In this study,the mixed convection in a radiative magnetohydrodynamic Eyring-Powell copperwater nan...The optimal design of heating and cooling systems must take into account heat radiation which is a non-linear process.In this study,the mixed convection in a radiative magnetohydrodynamic Eyring-Powell copperwater nanofluid over a stretching cylinder was investigated.The energy balance is modeled,taking into account the non-linear thermal radiation and a thermal slip condition.The effects of the embedded flow parameters on the fluid properties,as well as on the skin friction coefficient and heat transfer rate,are analyzed.Unlike in many existing studies,the recent spectral quasi-linearization method is used to solve the coupled nonlinear boundary-value problem.The computational result shows that increasing the nanoparticle volume fraction,thermal radiation parameter and heat generation parameter enhances temperature profile.We found that the velocity slip parameter and the fluid material parameter enhance the skin friction.A comparison of the current numerical results with existing literature for some limiting cases shows excellent agreement.展开更多
基金Sponsored by the National Science and Technology Pillar Program during the 11th Five-Year Plan Period of China(Grant No. 2009BAK58B03-03 and 2006BAJ03A01-05)the Key Laboratory of Structural Engineering of Shenyang Jianzhu University,China(Grant No. JG200705)the Science & Re-search Program of Shenyang,China(Grant No. 1091064-A-00)
文摘Ten specimens were tested in this paper in order to study the bond behavior and the process of force transfer when bars adhered to mortar. The development of the bond stress between bars and mortar was calculated. Test results show that the maximum bond-stress is not influenced by the bar bond length and increases as the increased splitting strength of mortar for block. The local bond stress-slip curve was obtained. Then,based on the regressive analysis of test data,two bond shearing stress-slip constitutive models between bars and mortar were proposed. The models can be used in the numerical simulation or finite element analysis and provide references for the improvement of the corresponding design codes.
基金This work was supported by the National Key Research and Development Program of China(2018YFC1503603,2016YFB0501405)the National Natural Science Foundation of China(41874011,41774011)。
文摘On August 8,2017,an M_(W)6.5 earthquake occurred in Jiuzhaigou County,Sichuan Province,China,on the eastern margin of the Qinghai-Tibet Plateau.This study investigates the coseismic deformation field and fault model with ascending and descending Sentinel-1 synthetic aperture radar(SAR)images,aftershock distribution,and elastic half-space dislocation model.The regional fault slip pattern is then quantita-tively examined using the boundary element method.The results show that the ascending and descending interferometric synthetic aperture radar(InSAR)coseismic deformation fields display an overall NNW-SSE trend,with more significant deformation on the southwest side of the fault.The coseismic fault geometry is divided into NW and SE sub-faults with strikes of 162.1°and 149.3°,respectively.The coseismic fault slip is dominated by a left-lateral strike-slip movement with an average rake of-2.31°,mainly occurring at a depth of 0-13.04 km with a shape of an approximately inverted triangle.The fault slip features two peak slip zones,with a maximum of 1.39 m.The total seismic moment is 6.34×10^(18) N·m(M_(W)6.47).The boundary element calculation quantitatively indicates that the regional fault slip pattern may be mainly attributable to the changing strike and dip.The strike changes from NNWeSSE to nearly NS direction,and the dip gradually decreases from the Jiuzhaigou earthquake fault in the north to the Huya fault in the south.With these characteristics,the Huya and the Jiuzhaigou earthquake faults form the eastern boundary of the Minshan uplift zone and accommodate the accumulated deformation.
文摘Different slip models were used for prediction of r value of BCC metal sheets from ODF coefficients.According to the maximum plastic work theory developed by Bishop and Hill,it is expected that the higher of Taylor factors given by a slip’ model,the better prediction obtained based on the model.From this point of view,a composed slip model of BCC metals was presented.Based on the model,the agreement of predicted r values for deep drawing steels with experimental ones is excellent.
基金Project supported by the Botswana International University of Science and Technology(No. DVC/RDI/2/1/161(35))。
文摘Nanoparticle(drug particle) dispersion is an important phenomenon during nanodrug delivery in the bloodstream by using multifunctional carrier particles. The aim of this study is to understand the dispersion of drug particle(nanoparticle) transport during steady blood flow through a microvessel. A two-phase fluid model is considered to define blood flow through a microvessel. Plug and intermediate regions are defined by a non-Newtonian Herschel-Bulkley fluid model where the plug region appears due to the aggregation of red blood cells at the axis in the vessel. The peripheral(porous in nature)region is defined by the Newtonian fluids. The wall of the microvessel is considered to be permeable and characterized by the Darcy model. Stress-jump and velocity slip conditions are incorporated respectively at the interface of the intermediate and peripheral regions and at the inner surface of the microvessel. The effects of the rheological parameter, the pressure constant, the particle volume fraction, the stress jump constant, the slip constant,and the yield stress on the dispersion are analyzed and discussed. It is observed that the non-dimensional pressure gradient and the yield stress enhance the dispersion rate of the nanoparticle, while the opposite trends are observed for the velocity slip constant, the nanoparticle volume fraction, the rheological parameter, and the stress-jump constant.
基金Supported by National Natural Science Foundation of China (No. 50778058 and No. 90715038)National Key Technology Research and Development Program of China (No. 2006BAC13B02)Major State Basic Research Development Program of China ("973" Program, No. 2008CB425802)
文摘The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In this process, source parameters were treated as normal random variables, and the Fortran code of hybrid slip model was modified by adding a random number generator so that the code could generate many finite fault models with different dimensions and slip distributions for a given magnitude.Furth...
基金Project supported by the National Natural Science Foundation of China(Nos.11272237 and11502131)the Natural Science Foundation of Fujian Province(No.2016J05019)the Foundation of the Higher Education Institutions of Fujian Education Department for Distinguished Young Scholar(No.[2016]23)
文摘A polymeric gel is an aggregate of polymers and solvent molecules, which can retain its shape after a large deformation. The deformation behavior of polymeric gels was often described based on the Flory-Rehner free energy function without considering the influence of chain entanglements on the mechanical behavior of gels. In this paper,a new hybrid free energy function for gels is formulated by combining the EdwardsVilgis slip-link model and the Flory-Huggins mixing model to quantify the time-dependent concurrent process of large deformation and mass transport. The finite element method is developed to analyze examples of swelling-induced deformation. Simulation results are compared with available experimental data and show good agreement. The influence of entanglements on the time-dependent deformation behavior of gels is also demonstrated.The study of large deformation kinetics of polymeric gel is useful for diverse applications.
文摘Most of the earthquake faults in North-East India, China, mid Atlantic-ridge, the Pacific seismic belt and Japan are found to be predominantly dip-slip in nature. In the present paper a dip-slip fault is taken situated in an elastic layer over a viscoelastic half space representing the lithosphere-asthenosphere system. A movement of the dip-slip nature across the fault occurs when the accumulated stress due to various tectonic reasons e.g. mantle convection etc., exceeds the local friction and cohesive forces across the fault. The movement is assumed to be slipping in nature, expressions for displacements, stresses and strains are obtained by solving associated boundary value problem with the help of integral transformation and Green’s function method and a suitable numerical methods is used for computation. A detailed study of these expressions may give some ideas about the nature of stress accumulation in the system, which in turn will be helpful in formulating an earthquake prediction programme.
基金sponsored by the Norwegian Public Roads Administration(NPRA)
文摘The Norwegian Public Roads Administration(NPRA) is planning for an upgrade of the E39 highway route at the westcoast of Norway. Fixed links shall replace ferries at seven fjord crossings. Wide spans and large depths at the crossings combined with challenging subsea topography and environmental loads call for an extension of existing practice. A variety of bridge concepts are evaluated in the feasibility study. The structures will experience significant loads from deadweight, traffic and environment. Anchoring of these forces is thus one of the challenges met in the project. Large-size subsea rock anchors are considered a viable alternative. These can be used for anchoring of floating structures but also with the purpose of increasing capacity of fixed structures. This paper presents first a thorough study of factors affecting rock anchor bond capacity. Laboratory testing of rock anchors subjected to cyclic loading is thereafter presented. Finally, the paper presents a model predicting the capacity of a rock anchor segment, in terms of a ribbed bar, subjected to a cyclic load history. The research assumes a failure mode occurring in the interface between the rock anchor and the surrounding grout. The constitutive behavior of the bonding interface is investigated for anchors subjected to cyclic one-way tensile loads. The model utilizes the static bond capacity curve as a basis, defining the ultimate bond sbuand the slip s1 at τ. A limited number of input parameters are required to apply the model. The model defines the bond-slip behavior with the belonging rock anchor capacity depending on the cyclic load level(τcy/τ), the cyclic load ratio(R= τcy/τcy), and the number of load cycles(N). The constitutive model is intended to model short anchor lengths representing an incremental length of a complete rock anchor.
基金supported by National Key Research and Development Plan of China (No. 2018YFF01014204)"Fundamental Research Program of China (No. 2015CB057906)"
文摘The stability of rock slope is often controlled by the existing discontinuous surfaces, such as discrete fractures, which are ubiquitously distributing in a geological medium. In contrast with the traditional approaches used in soil slope with a continuous assumption, the simulation methods of jointed rock slope are different from that of in soil slope. This paper presents a study on jointed rock slope stability using the proposed discontinuous approach, which considers the effects of discrete fractures. Comparing with traditional methods to model fractures in an implicit way, the presented approach provides a method to simulate fractures in an explicit way, where grids between rock matrix and fractures are independent. To complete geometric components generation and mesh partition for the model, the corresponding algorithms were devised. To evaluate the stability state of rock slope quantitatively, the strength reduction method was integrated into our analysis framework. A benchmark example was used to verify the validation of the approach. A jointed rock slope, which contains natural fractures, was selected as a case study and was simulated regarding the workflow of our framework. It was set up in the light of the geological condition of the site. Slope stability was evaluated under different loading conditions with various fracture patterns. Numerical results show that fractures have significant contributions to slope stability, and different fracture patterns would lead to different shapes of the slip surface. The devised method has the ability to calculate a non-circular slip surface, which is different from a circular slip surface obtained by classical methods.
基金Projects(41604111,41541036) supported by the National Natural Science Foundation of China
文摘Estimating the spatial distribution of coseismic slip is an ill-posed inverse problem, and solutions may be extremely oscillatory due to measurement errors without any constraints on the coseismic slip distribution. In order to obtain stable solution for coseismic slip inversion, regularization method with smoothness-constrained was imposed. Trade-off parameter in regularized inversion, which balances the minimization of the data misfit and model roughness, should be a critical procedure to achieve both resolution and stability. Then, the active constraint balancing approach is adopted, in which the trade-off parameter is regarded as a spatial variable at each model parameter and automatically determined via the model resolution matrix and the spread function. Numerical experiments for a synthetical model indicate that regularized inversion using active constraint balancing approach can provides stable inversion results and have low sensitivity to the knowledge of the exact character of the Gaussian noise. Regularized inversion combined with active constraint balancing approach is conducted on the 2005 Nias earthquake. The released moment based on the estimated coseismic slip distribution is 9.91×1021 N·m, which is equivalent to a moment magnitude of 8.6 and almost identical to the value determined by USGS. The inversion results for synthetic coseismic uniform-slip model and the 2005 earthquake show that smoothness-constrained regularized inversion method combined with active constraint balancing approach is effective, and can be reasonable to reconstruct coseismic slip distribution on fault.
基金supported by the Strategic Program of Chinese Academy of Sciences(Grant No.XDB10030400)the Hundred Talent Program of Chinese Academy of Sciences(Grant No.Y323081C01)the National Natural Science Foundation of China(Grant No.51439008)
文摘We propose a boundary scheme for addressing multi-mechanism flow in a porous medium in slip and early transition flow regimes, which is frequently encountered in shale gas reservoirs. Micro-gaseous flow in organic-rich shale involves a complex flow mechanism. A self-developed boundary scheme that combines the non-equilibrium extrapolation scheme and the combined diffusive reflection and bounce-back scheme(half-way DBB) to embed the Langmuir slip boundary into the single-relaxation-time lattice Boltzmann method(SRT-LBM) enables us to describe this process, namely, the coupling effect of micro-gaseous flow and surface diffusion in organic-rich nanoscale pores. The present LBM model comes with the careful consideration of the local Knudsen number, local pressure gradient, viscosity correction model, and regularization procedure to account for the rarefied gas flows in irregular pores. Its validity and accuracy are verified by several benchmarking cases, and the calculated results by this boundary scheme accord well with our analytical solutions.This boundary scheme shows a higher accuracy than the existing studies. Additionally, a subiteration strategy is presented to tackle the coupled micro-gaseous flow and surface diffusion, which necessitates the iteration process matching of these two mechanisms. The multi-mechanism flow in the self-developed irregular pores is also numerically investigated and analyzed over a wide range of parameters. The results indicate that the present model can effectively capture the coupling effect of micro-gaseous flow and surface diffusion in a tree-like porous medium.
基金Project supported by the National Natural Science Foundation of China(Nos.11102102 and 91130017)the Independent Innovation Foundation of Shandong University(No.2013ZRYQ002)
文摘In consideration of the electroosmotic flow in a slit microchannel, the con-stitutive relationship of the Eyring fluid model is utilized. Navier's slip condition is used as the boundary condition. The governing equations are solved analytically, yielding the velocity distribution. The approximate expressions of the velocity distribution are also given and discussed. Furthermore, the effects of the dimensionless parameters, the electrokinetic parameter, and the slip length on the flow are studied numerically, and appropriate conclusions are drawn.
基金Project(2006BAJ03A01-05) supported by National Science and Technology Pillar Program during the 11th Five-Year Plan Period of ChinaProject (JG200705) supported by Key Laboratory of Structural Engineering of Shenyang Jianzhu University, China
文摘To establish bonding stress—slip constitutive model between bars and grout concrete,13 test specimens were employed to study the bonding behavior and the force transfer of bars adhered to grout concrete. The bonding stress development of bars adhered to grout concrete was analyzed. The local bonding stress—slip curve was obtained. Based on the test results,a new bonding stress— slip constitutive model between bars and grout concrete was proposed. The results show that the maximum bonding stress is not influenced by the bar bond length,but it is strengthened when the splitting strength of grout concrete is increased. The model matches the experimental results well,and the regressing coefficient equals 1.7.
文摘In order to improve the brake performance of a dual independent electric drive tracked vehicle,a dynamic model for braking situation was established.Then,a sliding model controller(SMC)with an auxiliary system was designed to control the slip and its effectiveness was proved.A hardware-in-loop simulation through MATLAB/XPC was compared with the normal SMC and normal integral sliding mode controller(ISMC),the results show that SMC with the auxiliary system has a better performance:a smaller overshoot and steady state error.The disturbance is suppressed effectively.In the initial speed of 65.km/h,the brake distance was shortened by 3.4%and 6.8%compared with the other two methods,respectively.Finally,initial speeds of 30-36.km/h tests was carried out on a flat soil road.Compared with a no-control brake,the displacement was shortened by 1.8.m.It demonstrates the effectiveness of the slip-control strategy.In the same situation,the error between the simulation and test is 18.1%,which validates the accuracy of models.
文摘The optimal design of heating and cooling systems must take into account heat radiation which is a non-linear process.In this study,the mixed convection in a radiative magnetohydrodynamic Eyring-Powell copperwater nanofluid over a stretching cylinder was investigated.The energy balance is modeled,taking into account the non-linear thermal radiation and a thermal slip condition.The effects of the embedded flow parameters on the fluid properties,as well as on the skin friction coefficient and heat transfer rate,are analyzed.Unlike in many existing studies,the recent spectral quasi-linearization method is used to solve the coupled nonlinear boundary-value problem.The computational result shows that increasing the nanoparticle volume fraction,thermal radiation parameter and heat generation parameter enhances temperature profile.We found that the velocity slip parameter and the fluid material parameter enhance the skin friction.A comparison of the current numerical results with existing literature for some limiting cases shows excellent agreement.