Magnetic properties and intergranular action in bonded hybrid magnets,based on NdFeB and strontium ferrite powders were investigated.The long-range magnetostatic interaction and short-range exchange coupling interacti...Magnetic properties and intergranular action in bonded hybrid magnets,based on NdFeB and strontium ferrite powders were investigated.The long-range magnetostatic interaction and short-range exchange coupling interaction existed simultaneously in bonded hybrid magnets,and neither of them could be neglected.Some magnetic property parameters of hybrid magnets could be approximately obtained by adding the hysteresis loops of two magnets pro rata.展开更多
Anisotropic NdFeB/SmFeN hybrid bonded magnets were prepared by warm compaction process under an orientation magnetic field of 22 kOe,mixing with anisotropic SmFeN powders in different addition and HDDR-NdFeB powders i...Anisotropic NdFeB/SmFeN hybrid bonded magnets were prepared by warm compaction process under an orientation magnetic field of 22 kOe,mixing with anisotropic SmFeN powders in different addition and HDDR-NdFeB powders in different coercivity.With the addition of 20 wt% SmFeN,the density and remanence of hybrid magnets increase from 5.58 g/cm~3,8.4 kGs to 6.02 g/cm~3,9.0 kGs,respectively.And as the addition amount of SmFeN powders varies from 20 wt% to 40 wt%,the maximum energy product changes less than 0.5 MGOe.In addition,the magnetization process and the interactions between two powders were studied.It is found that the magnetization process of anisotropic NdFeB powders shows distinction in different initial states.The addition of SmFeN powders promotes the rotation of NdFeB powders together with applied field,which is beneficial to the degree of alignment of NdFeB powders.Because of the micron-sized long range coupling effect,the coercivity of hybrid magnets decreases slowly with the increase of low coercivity SmFeN.Meanwhile,the magnetization process of hybrid magnets is different from pure magnets,it increases rapidly at low field and then slowly,next leads to rapidity again and achieves the saturation magnetization finally.展开更多
Anisotropic MnBi/NdFeB (MnBi contents of 0 wt%, 20 wt%, 40 wt%, 60 wt%, 80 wt%, and 100 wt%) hybrid bonded magnets were prepared by molding compression using MnBi powders and commercial hydro-genation disproportiona...Anisotropic MnBi/NdFeB (MnBi contents of 0 wt%, 20 wt%, 40 wt%, 60 wt%, 80 wt%, and 100 wt%) hybrid bonded magnets were prepared by molding compression using MnBi powders and commercial hydro-genation disproportionation desorption and recombination (HDDR) NdFeB powders. Magnetic measurements at room temperature show that with MnBi content increasing, the magnetic properties of the MnBi/NdFeB hybrid bonded magnets all decrease gradually, while the density of the hybrid magnets improves almost linearly. In a temperature range of 293-398 K, the coercivity temperature coefficient of the hybrid magnets improves gradually from -0.59 %.K^-1 for the pure NdFeB bonded magnet to -0.32 %.K^-1 for the hybrid bonded magnet with 80 wt% MnBi, and the pure MnBi bonded magnet exhibits a positive coercivity temperature coefficient of 0.61%-K^-1.展开更多
基金Project supported by the Nanocompound Rare Earth Permanent Magnetic Material Research(BG2004033)National KeyProject for Basic Research(2005CB623605)
文摘Magnetic properties and intergranular action in bonded hybrid magnets,based on NdFeB and strontium ferrite powders were investigated.The long-range magnetostatic interaction and short-range exchange coupling interaction existed simultaneously in bonded hybrid magnets,and neither of them could be neglected.Some magnetic property parameters of hybrid magnets could be approximately obtained by adding the hysteresis loops of two magnets pro rata.
基金supported by the National Key Research and Development Program of China (2021YFB3500202,2021YFB3500201)the Beijing Youth Top-notch Team Support Project of China (2018000021223TD10)+2 种基金the Beijing NOVA Program (Z211100002121092)the Natural Science Foundation of Hebei Province (E2021103006)the Hebei Province International Science and Technology Cooperation Base Construction Project of China (20591002D)。
文摘Anisotropic NdFeB/SmFeN hybrid bonded magnets were prepared by warm compaction process under an orientation magnetic field of 22 kOe,mixing with anisotropic SmFeN powders in different addition and HDDR-NdFeB powders in different coercivity.With the addition of 20 wt% SmFeN,the density and remanence of hybrid magnets increase from 5.58 g/cm~3,8.4 kGs to 6.02 g/cm~3,9.0 kGs,respectively.And as the addition amount of SmFeN powders varies from 20 wt% to 40 wt%,the maximum energy product changes less than 0.5 MGOe.In addition,the magnetization process and the interactions between two powders were studied.It is found that the magnetization process of anisotropic NdFeB powders shows distinction in different initial states.The addition of SmFeN powders promotes the rotation of NdFeB powders together with applied field,which is beneficial to the degree of alignment of NdFeB powders.Because of the micron-sized long range coupling effect,the coercivity of hybrid magnets decreases slowly with the increase of low coercivity SmFeN.Meanwhile,the magnetization process of hybrid magnets is different from pure magnets,it increases rapidly at low field and then slowly,next leads to rapidity again and achieves the saturation magnetization finally.
基金financially supported by the National Natural Science Foundation of China(No.51271005)the Beijing Municipal Natural Science Foundation(No.2122006)+2 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(No.32009001201301)the Project from Samsung Advanced Institute of Technology(No.46009001201402)the Fundamental Research Foundation of Beijing University of Technology(No.009000514313002)
文摘Anisotropic MnBi/NdFeB (MnBi contents of 0 wt%, 20 wt%, 40 wt%, 60 wt%, 80 wt%, and 100 wt%) hybrid bonded magnets were prepared by molding compression using MnBi powders and commercial hydro-genation disproportionation desorption and recombination (HDDR) NdFeB powders. Magnetic measurements at room temperature show that with MnBi content increasing, the magnetic properties of the MnBi/NdFeB hybrid bonded magnets all decrease gradually, while the density of the hybrid magnets improves almost linearly. In a temperature range of 293-398 K, the coercivity temperature coefficient of the hybrid magnets improves gradually from -0.59 %.K^-1 for the pure NdFeB bonded magnet to -0.32 %.K^-1 for the hybrid bonded magnet with 80 wt% MnBi, and the pure MnBi bonded magnet exhibits a positive coercivity temperature coefficient of 0.61%-K^-1.