Zero-dimensional(0D)hybrid metal halides,which consist of organic cations and isolated inorganic metal halide anions,have emerged as phosphors with efficient broadband emissions.However,these materials generally have ...Zero-dimensional(0D)hybrid metal halides,which consist of organic cations and isolated inorganic metal halide anions,have emerged as phosphors with efficient broadband emissions.However,these materials generally have too wide bandgaps and thus cannot be excited by blue light,which hinders their applications for efficient white light-emitting diodes(WLEDs).The key to achieving a blue-light-excitable 0D hybrid metal halide phosphor is to reduce the fundamental bandgap by rational chemical design.In this work,we report two designed hybrid copper(I)iodides,(Ph_(3)MeP)_(2)Cu_(4)I_(6)and(Cy_(3)MeP)_(2)Cu_(4)I_(6),as blue-light-excitable yellow phosphors with ultrabroadband emission.In these compounds,the[Cu_(4)I_(6)]^(2-)anion forms an I6 octahedron centered on a cationic Cu_(4)tetrahedron.The strong cation-cation bonding within the unique cationic Cu_(4)tetrahedra enables significantly lowered conduction band minimums and thus narrowed bandgaps,as compared to other reported hybrid copper(I)iodides.The ultrabroadband emission is attributed to the coexistence of free and self-trapped excitons.The WLED using the[Cu_(4)I_(6)]^(2-)anion-based single phosphor shows warm white light emission,with a high luminous efficiency of 65 Im W^(-1)and a high color rendering index of 88.This work provides strategies to design narrow-bandgap 0D hybrid metal halides and presents two first examples of blue-light-excitable 0D hybrid metal halide phosphors for efficient WLEDs.展开更多
This work aims to investigate the mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hotroll bonding(HRB)based on friction stir welding.The results showed that ultimate tensile...This work aims to investigate the mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hotroll bonding(HRB)based on friction stir welding.The results showed that ultimate tensile strength and total elongation of the hot-rolled and aged joints increased with the packaging vacuum,and the tensile specimens fractured at the matrix after exceeding 1 Pa.Non-equilibrium grain boundaries were formed at the hot-rolled interface,and a large amount of Mg_(2)Si particles were linearly precipitated along the interfacial grain boundaries(IGBs).During subsequent heat treatment,Mg_(2)Si particles dissolved back into the matrix,and Al_(2)O_(3) film remaining at the interface eventually evolved into MgO.In addition,the local IGBs underwent staged elimination during HRB,which facilitated the interface healing due to the fusion of grains at the interface.This process was achieved by the dissociation,emission,and annihilation of dislocations on the IGBs.展开更多
The interfacial chemistry of solid electrolyte interphases(SEI)on lithium(Li)electrode is directly determined by the structural chemistry of the electric double layer(EDL)at the interface.Herein,a strategy for regulat...The interfacial chemistry of solid electrolyte interphases(SEI)on lithium(Li)electrode is directly determined by the structural chemistry of the electric double layer(EDL)at the interface.Herein,a strategy for regulating the structural chemistry of EDL via the introduction of intermolecular hydrogen bonds has been proposed(p-hydroxybenzoic acid(pHA)is selected as proof-of-concept).According to the molecular dynamics(MD)simulation and density functional theory(DFT)calculation results,the existence of hydrogen bonds realizes the anion structural rearrangement in the EDL,reduces the lowest unoccupied molecular orbital(LUMO)energy level of anions in the EDL,and the number of free solvent molecules,which promotes the formation of inorganic species-enriched SEI and eventually achieves the dendrite-free Li deposition.Based on this strategy,Li‖Cu cells can stably run over 185 cycles with an accumulated active Li loss of only 2.27 mAh cm^(-2),and the long-term cycle stability of Li‖Li cells is increased to 1200 h.In addition,the full cell pairing with the commercial LiFePO_(4)(LFP)cathodes exhibits stable cycling performance at 1C,with a capacity retention close to 90%after 200 cycles.展开更多
One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm ...One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm for bonding time of 20,40,60,and 90 min.The bonding temperature of 860℃ was considered,which is under the β transus temperature of Cp-Ti.During TLP bonding,various intermetallic compounds(IMCs),including Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe),Ti_(2)(Cu,Ag),and Ti_(2)Cu from 304L toward Cp-Ti formed in the joint.Also,on the one side,with the increase in time,further diffusion of elements decreases the blocky IMCs such as Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe)in the 304L diffusion-affected zone(DAZ)and reaction zone,and on the other side,Ti_(2)(Cu,Ag)IMC transformed into fine morphology toward Cp-Ti DAZ.The microhardness test also demonstrated that the(Cr,Fe)_(2)Ti+Ti_(5)Cr_(7)Fe_(17) IMCs in the DAZ on the side of 304L have a hardness value of HV 564,making it the hardest phase.The maximum and minimum shear strength values are equal to 78.84 and 29.0 MPa,respectively.The cleavage pattern dominated fracture surfaces due to the formation of brittle phases in dissimilar joints.展开更多
TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure ti...TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%.展开更多
The bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy at different bonding time were investigated. The results show that the average size of voids decreases while the amount ...The bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy at different bonding time were investigated. The results show that the average size of voids decreases while the amount of voids decreases after increasing to the maximum value with the increasing bonding time. The irregular void with a scraggly edge tends to an ellipse void with smooth surface and then changes to a tiny void with round shape. The grains across bonding interface occur at bonding time of 60 min. The shear strength of bond increases with increasing bonding time, and the highest shear strength of bond is 887.4 MPa at 60 min. The contribution of plastic deformation on the void closure and the increase of shear strength is significant even though the action time of plastic deformation is short.展开更多
Ni-based alloy was transient liquid phase bonded using a BNi-2 interlayer. The effect of bonding parameters on the microstructures and mechanical properties of the joints was investigated. With the increase of bonding...Ni-based alloy was transient liquid phase bonded using a BNi-2 interlayer. The effect of bonding parameters on the microstructures and mechanical properties of the joints was investigated. With the increase of bonding temperature or time, the number of Ni-rich and Cr-rich borides and the grain size of precipitation zone decrease. Higher bonding temperature or longer bonding time is beneficial to the diffusion of melting point depressant elements (B and Si) from the PZ to the base metal and atomic interdiffusion between the base metal and the joint. The chemical composition and microstructure of the joints bonded at 1170 ℃ for 24 h are comparable to the base metal. The shear test results show that both the room and elevated temperature shear-strengths of the joints increase with increasing bonding time. However, the effect of bonding time on elevated temperature tensile-shear strength is greater than on room temperature tensile-shear strength.展开更多
The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average ...The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average size of voids increases from 0.8 to 2.6 μm and the bonding ratio decreases from 90.9% to 77.8% with an increase in grain size of primary α phase from 8.2 to 16.4 μm. The shape of voids changes from the tiny round to the irregular strip. The highest shear strength of bond can be obtained in the Ti-6Al-4V alloy with a grain size of 8.2 μm. This is contributed to the higher ability of plastic flow and more short-paths for diffusion in the alloy with smaller grain size of primary α phase, which promote the void closure process and the formation of α/β grains across bonding interface.展开更多
The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that t...The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that the interface between the solid Fe and Al formed by heat-treatment consisted of Fe2Al5 and FeAl3 intermetallic compound layers, which deteriorated the interfacial bonding strength. Fractures occurred in the intermetallic compound layer during the shear testing. The location of the fracture depended on the defects of microcracks or voids in the intermetallic compound layers. The microcracks in the intermetallic compound layer were caused by the mismatch of thermal expansion coefficients of materials during cooling, and the voids were consistent with the Kirkendall effect. The work will lay an important foundation for welding and joining of aluminum and steel, especially for fabrication of Al-Fe clad materials.展开更多
The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (...The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), ultrasonic flaw detection (UFD), and bonding strength tests. The results show that metallurgical bonding is achieved at the interface after composite rolling. The TEM analysis and tensile tests indicate that the 7B52 ALC plate combines high strength of the hard individual layer and good toughness of the soft individual layer. However, UFD technology and SEM analysis prove that the defects (thick oxide films, acid washed residues, air, oil and coarse particles) existing in the bonding interface are harmful to the bonding strength. To sum up, the composite roiling process is suitable for 7B52 ALC plate, and the content and size of the defects should be controlled strictly. Advanced surface treatment of each individual layer would be beneficial to further improve the bonding quality.展开更多
Diffusion bonding between tungsten and 0Cr13Al stainless steel using a Cu/90W-10Ni powder mixtures/Ni multi-interlayer was carried out in vacuum at 1150 °C with a pressure of 5 MPa for 60 min. The microstructures...Diffusion bonding between tungsten and 0Cr13Al stainless steel using a Cu/90W-10Ni powder mixtures/Ni multi-interlayer was carried out in vacuum at 1150 °C with a pressure of 5 MPa for 60 min. The microstructures, composition distribution and fracture characteristics of the joint were studied by SEM and EDS. Joint properties were evaluated by shear experiments and thermal shock tests. The results showed that the joints comprised tungsten/Cu-Ni sub-layer/W-Ni composites sub-layer/Ni sub-layer/0Cr13Al stainless steel. The W-Ni composites sub-layer with a homogeneous and dense microstructure was formed by solid phase sintering of 90W-10Ni powder mixtures. Sound bonding between tungsten base material and W-Ni composites sub-layer was realized based on transient liquid phase (TLP) diffusion bonding mechanism. Joints fractured at bonding zone of W-Ni composites sub-layer and Ni sub-layer during shear testing, and the average strength was 256 MPa. Thermal shock tests showed that joints could withstood 60 thermal cycles quenching from 700 °C to room temperature.展开更多
The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al ele...The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al elemental powder preplaced on the austenitic stainless steel substrate to produce a coating for further processing. The as-received coating was subjected to FSP treatment, processed by a rotary tool rod made of WC?Co alloy, to obtain sample for inspection. Microstructure, phase constitutions, hardness and wear property were investigated by methods of scanning electronic microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) microanalysis, and X-ray diffraction (XRD), hardness test alongside with dry sliding wear test. The results show that the severe deformation effect exerted on the specimen resulted in an ultra-fine grain layer of about 100μmin thickness and grain size of 1?2μm. Synergy between introduction of WC particles to the deformation layer and deformation strengthening contributes greatly to the increase in hardness and friction resistance. An interlocking bonding between the coating and matrix which significantly improves bonding strength was formed due to the severe deformation effect.展开更多
AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at th...AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at the bonding interface were investigated in detail. The results show that the cladding billet with few defects could be obtained by semi-continuous casting process. At the interface, diffusion layer of about 10μm on average formed between the two alloys due to the diffusion of alloy elements in the temperature range from 596 to 632 °C. From the side of AA4045 to the side of AA3003, the Si content has a trend to decrease, while the Mn content has a trend to increase gradually. Tensile strength of the cladding billet reaches 103.7 MPa, the fractured position is located on the AA3003 side, and the shearing strength is 91.1 MPa, revealing that the two alloys were combined metallurgically by mutual diffusion of alloy elements.展开更多
The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within genera...The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the orthorhombic structure phase Re2P is metallic material. The density of state (DOS) and the partial density of state (PDOS) calculations show that the DOS near the Fermi level is mainly from the Re-5d state. Population analysis suggests that the chemical bonding in Re2P has predominantly covalent character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, and elastic constants Cij, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that the Co2P-type structure phase Re2P is mechanically stable and behaves in a brittle manner.展开更多
BN coated A1203 fibre-reinforced NiAl-alloy composites were fabricated by hot pressing at 1 200-1 400 ℃, and the interracial microstructure and chemical stability of BN coated Al2O3 fibre-reinforced NiAl-alloy compos...BN coated A1203 fibre-reinforced NiAl-alloy composites were fabricated by hot pressing at 1 200-1 400 ℃, and the interracial microstructure and chemical stability of BN coated Al2O3 fibre-reinforced NiAl-alloy composites were investigated by scanning electron microscopy (SEM) and analytical transmission electron microscopy (TEM). It was found that the complicated chemical reactions and diffusion processes happened in the interface area between BN-layer and Ni25.8A19.6Ta8.3 during the hot pressing at 1 200-1 400 ℃. A continuous AlN-layer was formed at the interface due to the reaction between NiAl and BN. At the same time, Cr diffused extensively into the BN-layer and reacted with boron to form Cr boride precipitates (CrsB3). In addition, a few particles of Ta-rich phase were also precipitated in NiAl matrix near the interface.展开更多
Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper...Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.展开更多
Dentin matrix metalloproteinases (MMPs) are a family of host-derived proteolytic enzymes trapped within mineralized dentin matrix, which have the ability to hydrolyze the organic matrix of demineralized dentin. Afte...Dentin matrix metalloproteinases (MMPs) are a family of host-derived proteolytic enzymes trapped within mineralized dentin matrix, which have the ability to hydrolyze the organic matrix of demineralized dentin. After bonding with resins to dentin there are usually some exposed collagen fibrils at the bottom of the hybrid layer owing to imperfect resin impregnation of the demineralized dentin matrix. Exposed collagen fibrils might be affected by MMPs inducing hydrolytic degradation, which might result in reduced bond strength.Most MMPs are synthesized and released from odontoblasts in the form of proenzymes, requiring activation to degrade extracellular matrix components. Unfortunately, they can be activated by modem self-etch and etch-and-rinse adhe- sives. The aim of this review is to summarize the current knowledge of the role of dentinal host-derived MMPs in dentin matrix degradation. We also discuss various available MMP inhibitors, especially chlorhexidine, and suggest that they could provide a potential pathway for inhibiting collagen degradation in bonding interfaces thereby increasing dentin bonding durability.展开更多
Our previous studies showed that biomodification of demineralized dentin collagen with proanthocyanidin(PA) for a clinically practical duration improves the mechanical properties of the dentin matrix and the immedia...Our previous studies showed that biomodification of demineralized dentin collagen with proanthocyanidin(PA) for a clinically practical duration improves the mechanical properties of the dentin matrix and the immediate resin–dentin bond strength. The present study sought to evaluate the ability of PA biomodification to reduce collagenase-induced biodegradation of demineralized dentin matrix and dentin/adhesive interfaces in a clinically relevant manner. The effects of collagenolytic and gelatinolytic activity on PA-biomodified demineralized dentin matrix were analysed by hydroxyproline assay and gelatin zymography. Then, resin-/dentin-bonded specimens were prepared and challenged with bacterial collagenases. Dentin treated with 2% chlorhexidine and untreated dentin were used as a positive and negative control, respectively. Collagen biodegradation, the microtensile bond strengths of bonded specimens and the micromorphologies of the fractured interfaces were assessed. The results revealed that both collagenolytic and gelatinolytic activity on demineralized dentin were notably inhibited in the PA-biomodified groups, irrespective of PA concentration and biomodification duration. When challenged with exogenous collagenases, PA-biomodified bonded specimens exhibited significantly less biodegradation and maintained higher bond strengths than the untreated control. These results suggest that PA biomodification was effective at inhibiting proteolytic activity on demineralized dentin matrix and at stabilizing the adhesive/dentin interface against enzymatic degradation, is a new concept that has the potential to improve bonding durability.展开更多
The halogen and hydrogen bonding complexes and trihalomethanes (CHX3, X=C1, Br, I) are between 2,2,6,6-tetramethylpiperidine-noxyl simulated by computational quantum chem- istry. The molecular electrostatic potentia...The halogen and hydrogen bonding complexes and trihalomethanes (CHX3, X=C1, Br, I) are between 2,2,6,6-tetramethylpiperidine-noxyl simulated by computational quantum chem- istry. The molecular electrostatic potentials, geometrical parameters and interaction energy of halogen and hydrogen bonding complexes combined with natural bond orbital analysis are obtained. The results indicate that both halogen and hydrogen bonding interactions obey the order CI〈Br〈I, and hydrogen bonding is stronger than the corresponding halogen bond- ing. So, hydrogen bonding complexes should be dominant in trihalomethanes. However, it is possible that halogen bonding complex is competitive, even preponderant, in triiodomethane due to the similar interaction energy. This work might provide useful information on specific solvent effects as well as for understanding the mechanism of nitroxide radicals as a bioprobe to interact with the halogenated compounds in biological and biochemical fields.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51972130)the Startup Fund of Huazhong University of Science and Technologythe Director Fund of Wuhan National Laboratory for Optoelectronics
文摘Zero-dimensional(0D)hybrid metal halides,which consist of organic cations and isolated inorganic metal halide anions,have emerged as phosphors with efficient broadband emissions.However,these materials generally have too wide bandgaps and thus cannot be excited by blue light,which hinders their applications for efficient white light-emitting diodes(WLEDs).The key to achieving a blue-light-excitable 0D hybrid metal halide phosphor is to reduce the fundamental bandgap by rational chemical design.In this work,we report two designed hybrid copper(I)iodides,(Ph_(3)MeP)_(2)Cu_(4)I_(6)and(Cy_(3)MeP)_(2)Cu_(4)I_(6),as blue-light-excitable yellow phosphors with ultrabroadband emission.In these compounds,the[Cu_(4)I_(6)]^(2-)anion forms an I6 octahedron centered on a cationic Cu_(4)tetrahedron.The strong cation-cation bonding within the unique cationic Cu_(4)tetrahedra enables significantly lowered conduction band minimums and thus narrowed bandgaps,as compared to other reported hybrid copper(I)iodides.The ultrabroadband emission is attributed to the coexistence of free and self-trapped excitons.The WLED using the[Cu_(4)I_(6)]^(2-)anion-based single phosphor shows warm white light emission,with a high luminous efficiency of 65 Im W^(-1)and a high color rendering index of 88.This work provides strategies to design narrow-bandgap 0D hybrid metal halides and presents two first examples of blue-light-excitable 0D hybrid metal halide phosphors for efficient WLEDs.
基金This work was financially supported by the National Key Research and Development Program of China(No.2018YFA0707300)the Key Research and Development Program projects of Shandong(No.2020CXGC010304).
文摘This work aims to investigate the mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hotroll bonding(HRB)based on friction stir welding.The results showed that ultimate tensile strength and total elongation of the hot-rolled and aged joints increased with the packaging vacuum,and the tensile specimens fractured at the matrix after exceeding 1 Pa.Non-equilibrium grain boundaries were formed at the hot-rolled interface,and a large amount of Mg_(2)Si particles were linearly precipitated along the interfacial grain boundaries(IGBs).During subsequent heat treatment,Mg_(2)Si particles dissolved back into the matrix,and Al_(2)O_(3) film remaining at the interface eventually evolved into MgO.In addition,the local IGBs underwent staged elimination during HRB,which facilitated the interface healing due to the fusion of grains at the interface.This process was achieved by the dissociation,emission,and annihilation of dislocations on the IGBs.
基金financially supported by the National Natural Science Foundation of China(Grant No.21905033,52271201)the Key Research and DevelopmentProgram of Sichuan Province(Grant No.2022YFG0100)+1 种基金the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province(Grant No.2022ZYD0045)the State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization(Grant No.2020P4FZG02A)
文摘The interfacial chemistry of solid electrolyte interphases(SEI)on lithium(Li)electrode is directly determined by the structural chemistry of the electric double layer(EDL)at the interface.Herein,a strategy for regulating the structural chemistry of EDL via the introduction of intermolecular hydrogen bonds has been proposed(p-hydroxybenzoic acid(pHA)is selected as proof-of-concept).According to the molecular dynamics(MD)simulation and density functional theory(DFT)calculation results,the existence of hydrogen bonds realizes the anion structural rearrangement in the EDL,reduces the lowest unoccupied molecular orbital(LUMO)energy level of anions in the EDL,and the number of free solvent molecules,which promotes the formation of inorganic species-enriched SEI and eventually achieves the dendrite-free Li deposition.Based on this strategy,Li‖Cu cells can stably run over 185 cycles with an accumulated active Li loss of only 2.27 mAh cm^(-2),and the long-term cycle stability of Li‖Li cells is increased to 1200 h.In addition,the full cell pairing with the commercial LiFePO_(4)(LFP)cathodes exhibits stable cycling performance at 1C,with a capacity retention close to 90%after 200 cycles.
文摘One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm for bonding time of 20,40,60,and 90 min.The bonding temperature of 860℃ was considered,which is under the β transus temperature of Cp-Ti.During TLP bonding,various intermetallic compounds(IMCs),including Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe),Ti_(2)(Cu,Ag),and Ti_(2)Cu from 304L toward Cp-Ti formed in the joint.Also,on the one side,with the increase in time,further diffusion of elements decreases the blocky IMCs such as Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe)in the 304L diffusion-affected zone(DAZ)and reaction zone,and on the other side,Ti_(2)(Cu,Ag)IMC transformed into fine morphology toward Cp-Ti DAZ.The microhardness test also demonstrated that the(Cr,Fe)_(2)Ti+Ti_(5)Cr_(7)Fe_(17) IMCs in the DAZ on the side of 304L have a hardness value of HV 564,making it the hardest phase.The maximum and minimum shear strength values are equal to 78.84 and 29.0 MPa,respectively.The cleavage pattern dominated fracture surfaces due to the formation of brittle phases in dissimilar joints.
基金supports from the National Natural Science Foundation of China(Nos.52075472,52004242)the National Key Research and Development Program of China(No.2018YFA0707300)the Natural Science Foundation of Hebei Province,China(No.E2020203001)。
文摘TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%.
基金Project(51275416)supported by the National Natural Science Foundation of China
文摘The bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy at different bonding time were investigated. The results show that the average size of voids decreases while the amount of voids decreases after increasing to the maximum value with the increasing bonding time. The irregular void with a scraggly edge tends to an ellipse void with smooth surface and then changes to a tiny void with round shape. The grains across bonding interface occur at bonding time of 60 min. The shear strength of bond increases with increasing bonding time, and the highest shear strength of bond is 887.4 MPa at 60 min. The contribution of plastic deformation on the void closure and the increase of shear strength is significant even though the action time of plastic deformation is short.
基金Projects (50975062, 51105107, 51275135, 51021002) supported by the National Natural Science Foundation of ChinaProject (QC2011C044) supported by the Natural Science Foundation of Heilongjiang Province, China+1 种基金Project (20112302130005) supported by Specialized Research Fund for the Doctoral Program of Higher Education, ChinaProject (20100471027) supported by the Postdoctoral Science Foundation of China
文摘Ni-based alloy was transient liquid phase bonded using a BNi-2 interlayer. The effect of bonding parameters on the microstructures and mechanical properties of the joints was investigated. With the increase of bonding temperature or time, the number of Ni-rich and Cr-rich borides and the grain size of precipitation zone decrease. Higher bonding temperature or longer bonding time is beneficial to the diffusion of melting point depressant elements (B and Si) from the PZ to the base metal and atomic interdiffusion between the base metal and the joint. The chemical composition and microstructure of the joints bonded at 1170 ℃ for 24 h are comparable to the base metal. The shear test results show that both the room and elevated temperature shear-strengths of the joints increase with increasing bonding time. However, the effect of bonding time on elevated temperature tensile-shear strength is greater than on room temperature tensile-shear strength.
基金Project(2014M562447) supported by the China Postdoctoral Science FoundationProject(51275416) supported by the National Natural Science Foundation of China+1 种基金Project(BP201503) supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)China
文摘The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average size of voids increases from 0.8 to 2.6 μm and the bonding ratio decreases from 90.9% to 77.8% with an increase in grain size of primary α phase from 8.2 to 16.4 μm. The shape of voids changes from the tiny round to the irregular strip. The highest shear strength of bond can be obtained in the Ti-6Al-4V alloy with a grain size of 8.2 μm. This is contributed to the higher ability of plastic flow and more short-paths for diffusion in the alloy with smaller grain size of primary α phase, which promote the void closure process and the formation of α/β grains across bonding interface.
基金Project(2011DFR50630)sponsored by the International S&T Cooperation of China
文摘The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that the interface between the solid Fe and Al formed by heat-treatment consisted of Fe2Al5 and FeAl3 intermetallic compound layers, which deteriorated the interfacial bonding strength. Fractures occurred in the intermetallic compound layer during the shear testing. The location of the fracture depended on the defects of microcracks or voids in the intermetallic compound layers. The microcracks in the intermetallic compound layer were caused by the mismatch of thermal expansion coefficients of materials during cooling, and the voids were consistent with the Kirkendall effect. The work will lay an important foundation for welding and joining of aluminum and steel, especially for fabrication of Al-Fe clad materials.
基金Project(51312JQ08)supported by the Pre-Research Foundation of China General Equipment DepartmentProject(NBPJ2013-4)supported by the Postdoctoral Science Foundation of Ningbo Branch of China Academy of Ordnance Science+1 种基金Project(bsh1402073)supported by the Postdoctoral Science Foundation of Zhejiang Province,ChinaProject(2014A610051)supported by the Ningbo Natural Science Foundation of China
文摘The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), ultrasonic flaw detection (UFD), and bonding strength tests. The results show that metallurgical bonding is achieved at the interface after composite rolling. The TEM analysis and tensile tests indicate that the 7B52 ALC plate combines high strength of the hard individual layer and good toughness of the soft individual layer. However, UFD technology and SEM analysis prove that the defects (thick oxide films, acid washed residues, air, oil and coarse particles) existing in the bonding interface are harmful to the bonding strength. To sum up, the composite roiling process is suitable for 7B52 ALC plate, and the content and size of the defects should be controlled strictly. Advanced surface treatment of each individual layer would be beneficial to further improve the bonding quality.
基金Project(51075205)supported by the National Natural Science Foundation of China
文摘Diffusion bonding between tungsten and 0Cr13Al stainless steel using a Cu/90W-10Ni powder mixtures/Ni multi-interlayer was carried out in vacuum at 1150 °C with a pressure of 5 MPa for 60 min. The microstructures, composition distribution and fracture characteristics of the joint were studied by SEM and EDS. Joint properties were evaluated by shear experiments and thermal shock tests. The results showed that the joints comprised tungsten/Cu-Ni sub-layer/W-Ni composites sub-layer/Ni sub-layer/0Cr13Al stainless steel. The W-Ni composites sub-layer with a homogeneous and dense microstructure was formed by solid phase sintering of 90W-10Ni powder mixtures. Sound bonding between tungsten base material and W-Ni composites sub-layer was realized based on transient liquid phase (TLP) diffusion bonding mechanism. Joints fractured at bonding zone of W-Ni composites sub-layer and Ni sub-layer during shear testing, and the average strength was 256 MPa. Thermal shock tests showed that joints could withstood 60 thermal cycles quenching from 700 °C to room temperature.
基金Projects(51571214,51301205,51101126)supported by the National Natural Science Foundation of ChinaProject(P2014-07)supported by the Open Fund of State Key Laboratory of Materials Processing and Die&Mould Technology,China+4 种基金Project(20130162120001)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(K1308034-11)supported by the Changsha Municipal Science and Technology Plan,ChinaProjects(2015GK3004,2015JC3006)supported by the Science and Technology Project of Hunan Province,ChinaProject supported by the Innovation-driven Plan in Central South University,ChinaProject supported by the Independent Project of State Key Laboratory of Powder Metallurgy of Central South University,China
文摘The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al elemental powder preplaced on the austenitic stainless steel substrate to produce a coating for further processing. The as-received coating was subjected to FSP treatment, processed by a rotary tool rod made of WC?Co alloy, to obtain sample for inspection. Microstructure, phase constitutions, hardness and wear property were investigated by methods of scanning electronic microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) microanalysis, and X-ray diffraction (XRD), hardness test alongside with dry sliding wear test. The results show that the severe deformation effect exerted on the specimen resulted in an ultra-fine grain layer of about 100μmin thickness and grain size of 1?2μm. Synergy between introduction of WC particles to the deformation layer and deformation strengthening contributes greatly to the increase in hardness and friction resistance. An interlocking bonding between the coating and matrix which significantly improves bonding strength was formed due to the severe deformation effect.
基金Project(2012CB723307)supported by the National Basic Research Program of ChinaProject(51204046)supported by the National Natural Science Foundation of ChinaProject(20130042130001)supported by the Doctoral Fund of Ministry of Education of China
文摘AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at the bonding interface were investigated in detail. The results show that the cladding billet with few defects could be obtained by semi-continuous casting process. At the interface, diffusion layer of about 10μm on average formed between the two alloys due to the diffusion of alloy elements in the temperature range from 596 to 632 °C. From the side of AA4045 to the side of AA3003, the Si content has a trend to decrease, while the Mn content has a trend to increase gradually. Tensile strength of the cladding billet reaches 103.7 MPa, the fractured position is located on the AA3003 side, and the shearing strength is 91.1 MPa, revealing that the two alloys were combined metallurgically by mutual diffusion of alloy elements.
基金Project(11271121)supported by the National Natural Science Foundation of ChinaProject(11JJ2002)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(11K038)supported by Key Laboratory of High Performance Computing and Stochastic Information Processing of Hunan Province,ChinaProject(2013GK3130)supported by the Scientific and Technological Plan Project of Hunan Province,China
文摘The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the orthorhombic structure phase Re2P is metallic material. The density of state (DOS) and the partial density of state (PDOS) calculations show that the DOS near the Fermi level is mainly from the Re-5d state. Population analysis suggests that the chemical bonding in Re2P has predominantly covalent character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, and elastic constants Cij, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that the Co2P-type structure phase Re2P is mechanically stable and behaves in a brittle manner.
基金Project (10972190) supported by the National Natural Science Foundation of China Projects (09A089, 08C207) supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProject (2010FJ3132) supported by the Planned Science and Technology Project of Hunan Province,China
文摘BN coated A1203 fibre-reinforced NiAl-alloy composites were fabricated by hot pressing at 1 200-1 400 ℃, and the interracial microstructure and chemical stability of BN coated Al2O3 fibre-reinforced NiAl-alloy composites were investigated by scanning electron microscopy (SEM) and analytical transmission electron microscopy (TEM). It was found that the complicated chemical reactions and diffusion processes happened in the interface area between BN-layer and Ni25.8A19.6Ta8.3 during the hot pressing at 1 200-1 400 ℃. A continuous AlN-layer was formed at the interface due to the reaction between NiAl and BN. At the same time, Cr diffused extensively into the BN-layer and reacted with boron to form Cr boride precipitates (CrsB3). In addition, a few particles of Ta-rich phase were also precipitated in NiAl matrix near the interface.
基金supported by the National Key Research and Development Program of China (2022YFB4002100)the development project of Zhejiang Province's "Jianbing" and "Lingyan" (2023C01226)+4 种基金the National Natural Science Foundation of China (22278364, U22A20432, 22238008, 22211530045, and 22178308)the Fundamental Research Funds for the Central Universities (226-2022-00044 and 226-2022-00055)the Science Foundation of Donghai Laboratory (DH-2022ZY0009)the Startup Foundation for Hundred-Talent Program of Zhejiang UniversityScientific Research Fund of Zhejiang Provincial Education Department.
文摘Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.
文摘Dentin matrix metalloproteinases (MMPs) are a family of host-derived proteolytic enzymes trapped within mineralized dentin matrix, which have the ability to hydrolyze the organic matrix of demineralized dentin. After bonding with resins to dentin there are usually some exposed collagen fibrils at the bottom of the hybrid layer owing to imperfect resin impregnation of the demineralized dentin matrix. Exposed collagen fibrils might be affected by MMPs inducing hydrolytic degradation, which might result in reduced bond strength.Most MMPs are synthesized and released from odontoblasts in the form of proenzymes, requiring activation to degrade extracellular matrix components. Unfortunately, they can be activated by modem self-etch and etch-and-rinse adhe- sives. The aim of this review is to summarize the current knowledge of the role of dentinal host-derived MMPs in dentin matrix degradation. We also discuss various available MMP inhibitors, especially chlorhexidine, and suggest that they could provide a potential pathway for inhibiting collagen degradation in bonding interfaces thereby increasing dentin bonding durability.
基金supported by research funds from the Natural Science Foundation of China (No. 81130078 and No. 81000458)Program for Changjiang Scholars and Innovative Research Team in University (No. IRT13051)
文摘Our previous studies showed that biomodification of demineralized dentin collagen with proanthocyanidin(PA) for a clinically practical duration improves the mechanical properties of the dentin matrix and the immediate resin–dentin bond strength. The present study sought to evaluate the ability of PA biomodification to reduce collagenase-induced biodegradation of demineralized dentin matrix and dentin/adhesive interfaces in a clinically relevant manner. The effects of collagenolytic and gelatinolytic activity on PA-biomodified demineralized dentin matrix were analysed by hydroxyproline assay and gelatin zymography. Then, resin-/dentin-bonded specimens were prepared and challenged with bacterial collagenases. Dentin treated with 2% chlorhexidine and untreated dentin were used as a positive and negative control, respectively. Collagen biodegradation, the microtensile bond strengths of bonded specimens and the micromorphologies of the fractured interfaces were assessed. The results revealed that both collagenolytic and gelatinolytic activity on demineralized dentin were notably inhibited in the PA-biomodified groups, irrespective of PA concentration and biomodification duration. When challenged with exogenous collagenases, PA-biomodified bonded specimens exhibited significantly less biodegradation and maintained higher bond strengths than the untreated control. These results suggest that PA biomodification was effective at inhibiting proteolytic activity on demineralized dentin matrix and at stabilizing the adhesive/dentin interface against enzymatic degradation, is a new concept that has the potential to improve bonding durability.
基金This work is supported by the National Natural Science Foundation of China (No.20675009 and No.90922023) and the Research Fund for the Doctoral Program of Higher Education of China (No.273914).
文摘The halogen and hydrogen bonding complexes and trihalomethanes (CHX3, X=C1, Br, I) are between 2,2,6,6-tetramethylpiperidine-noxyl simulated by computational quantum chem- istry. The molecular electrostatic potentials, geometrical parameters and interaction energy of halogen and hydrogen bonding complexes combined with natural bond orbital analysis are obtained. The results indicate that both halogen and hydrogen bonding interactions obey the order CI〈Br〈I, and hydrogen bonding is stronger than the corresponding halogen bond- ing. So, hydrogen bonding complexes should be dominant in trihalomethanes. However, it is possible that halogen bonding complex is competitive, even preponderant, in triiodomethane due to the similar interaction energy. This work might provide useful information on specific solvent effects as well as for understanding the mechanism of nitroxide radicals as a bioprobe to interact with the halogenated compounds in biological and biochemical fields.