Time-dependent density functional theory (TDDFT) and femtosecond transient absorption spectroscopy were used to investigate the photophysical properties of 2,3-dihydro-3-keto-lH- pyrido[3,2,1-kl]phenothiazine (PTZ4...Time-dependent density functional theory (TDDFT) and femtosecond transient absorption spectroscopy were used to investigate the photophysical properties of 2,3-dihydro-3-keto-lH- pyrido[3,2,1-kl]phenothiazine (PTZ4) and 3-keto-lH-pyrido[3,2,1-kl]phenothiazine (PTZ5). The calculated results obtained from TDDFT suggest that the red-shifts of the absorption spectra of these two fluorophores in methanol are due to the formation of hydrogen-bonded complexes at the ground state. Four conformers of PTZ4 were obtained by TDDFT. The two fluorescence peaks of PTZ4 in tetrahydrofuran (THF) came from the ICT states of the four conformers. The fluorescence of PTZ4 in THF showed a dependence on the excitation wavelength because of butterfly bending. The excited state dynamics of PTZ4 in THF and methanol were obtained by transient absorption spectroscopy. The lifetime of the excited PTZ4 in methanol was 53.8 ps, and its relaxation from the LE state to the ICT state was completed within several picoseconds. The short lifetime of excited PTZ4 in methanol was due to the formation of out-of-plane model hydrogen bonds between PTZ4 and methanol at the excited state.展开更多
The EPR parameters of trivalent Er(3+) ions doped in hexagonal Ga N crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be...The EPR parameters of trivalent Er(3+) ions doped in hexagonal Ga N crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be derived from the Kramers doublet Γ6. The EPR g-factors may be ascribed to the stronger covalent bonding and nephelauxetic effects compared with other rare-earth doped complexes, as a result of the mismatch of ionic radii of the impurity Er(3+)ion and the replaced Ga(3+) ion apart from the intrinsic covalency of host Ga N. Furthermore, the J–J mixing effects on the EPR parameters from the high-lying manifolds have been evaluated. It is found that the dominant J–J mixing contribution is from the manifold 2K(15/2), which accounts for about 2.5%. The next important J–J contribution arises from the crystal–field mixture between the ground state 4I(15/2) and the first excited state4I(13/2), and is usually less than 0.2%. The contributions from the rest states may be ignored.展开更多
The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation....The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation. A proper control of oxygen content at the Al2O3-Ni interfacecan promote wetting at the intedece, and produce a mechanically interlocked and chemically strengthened intedece, causing most of the nickel particles to be stretched to failure and to expe-rience severe plastic deformation during crack propagation in the composite. Fracture toughnesstesting using a modified double cantilever beam method with in situ observation of crack prop-agation in a scanning electron microscope shows that the composite with the strengthenedinterface has a more desirable R-curve behaviour and a higher fracture toughness value than thenormal composite.展开更多
Studies of direction of photoisomerization of retinal,retinonitrile,a- retinonitrile and a trienenitrile analog in different solvents with varying wave- lengths of excitation and reaction temperature led to the conclu...Studies of direction of photoisomerization of retinal,retinonitrile,a- retinonitrile and a trienenitrile analog in different solvents with varying wave- lengths of excitation and reaction temperature led to the conclusion that the well known solvent dependent photochemistry of retinoids is due to selective excitation of the hydrogen bonded species.展开更多
The main reaction products were investigated by analysis of microstructure of alkali-activated ground granulated blast furnace slag (GGBFS) paste. An experimental research was performed on bond performance of alkali...The main reaction products were investigated by analysis of microstructure of alkali-activated ground granulated blast furnace slag (GGBFS) paste. An experimental research was performed on bond performance of alkali-activated GGBFS paste as a construction adhesive after exposure to 20-500℃. Through XRD analysis, a few calcium silicate hydrate, hydrotalcite and tetracalcium aluminate hydrate were determined as end products, and they were filled and packed each other at room temperature. In addition, akermanite dramatically increased at 800 ~C and above. The two key parameters, the ultimate load Pu.T and effective bond length Le, were determined using test data of carbon fiber-reinforced polymer (CFRP)-to-concrete bonded joints at elevated temperature. The experimental results indicate that the ultimate load Pu.T remains relatively stable initially and then decreases with increasing temperature. The effective bond length Le increases with increasing temperature except at 300℃. The proposed temperature-dependent effective bond length formula is shown to closely represent the test data.展开更多
By employing molecular theory, we systematically investigate the shift of solubility of poly(N-isopropylacrylamide)(PNIPAM) brushes in sodium halide solutions. After considering PNIPAM–water hydrogen bonds, water...By employing molecular theory, we systematically investigate the shift of solubility of poly(N-isopropylacrylamide)(PNIPAM) brushes in sodium halide solutions. After considering PNIPAM–water hydrogen bonds, water–anion hydrogen bonds, and PNIPAM–anion bonds and their explicit coupling to the PNIPAM conformations, we find that increasing temperature lowers the solubility of PNIPAM, and results in a collapse of the layer at high enough temperatures. The combination of the three types of bonds would yield a decrease in the solubility of PNIPAM following the Hofmeister series: Na Cl>Na Br>Na I. PNIPAM–water hydrogen bonds are affected by water–anion hydrogen bonds and PNIPAM–anion bonds. The coupling of polymer conformations and the competition among the three types of bonds are essential for describing correctly a decrease in the solubility of PNIPAM brushes, which is determined by the free energy associated with the formation of the three types of bonds. Our results agree well with the experimental observations, and would be very important for understanding the shift of the lower critical solution temperature of PNIPAM brushes following the Hofmeister series.展开更多
The hydrogen bond percentage and its temperature dependence of the three TPU samples synthesized from polytetrahydrofuran, 4,4'-diphenylmethane diisocyanate, N -methyl diethanol amine or 1,4-butane diol were stud...The hydrogen bond percentage and its temperature dependence of the three TPU samples synthesized from polytetrahydrofuran, 4,4'-diphenylmethane diisocyanate, N -methyl diethanol amine or 1,4-butane diol were studied by means of IR thermal analysis. The enthalpy and the entropy of the hydrogen bond dissociation were determined by the Van't Hoff plot.展开更多
The spark plasma sintering(SPS) method was used to study the mechanism of reaction interface between Zr and Ti3AlC2 with electric current going through it. It was found that electric current greatly reduced the bond...The spark plasma sintering(SPS) method was used to study the mechanism of reaction interface between Zr and Ti3AlC2 with electric current going through it. It was found that electric current greatly reduced the bonding temperature of Zr and Ti3AlC2. By the micro-structure analysis of the interface through SEM/EDS, it was found that Al atoms diffused from the Ti3AlC2 substrate into the Zr side and reacted with Zr to form the Zr-Al compounds at the interface, which is the strengthening mechanism of Ti3AlC2-Zr bonding. The thickness of reaction layers(Zr-Al alloy) was from 0.879 to 13.945 mm depending on different sintering condition. Current direction, heating rate, soaking time, pulse patterns all influenced the diffusion of Al atoms which affected the joining quality of Zr and Ti3AlC2.展开更多
Relationships between the structure characteristics of natural p-terphenyl com- pounds isolated from three edible mushrooms (Thelephora ganbajun, Thelephora aeronautical, and Boletopsis grisea) indigenous to China a...Relationships between the structure characteristics of natural p-terphenyl com- pounds isolated from three edible mushrooms (Thelephora ganbajun, Thelephora aeronautical, and Boletopsis grisea) indigenous to China and their mechanism of antioxidant activity were studied. Geometry structures of terphenyl molecule and four corresponding radicals, bond dissociation energy (BDE), frontier orbitals (HOMO and LUMO) and single electron density were calculated using DFT methods (B3LYP/6-311G**). The computational results which are consistent with the experimental data well show that terphenyl molecule scavenges DPPH radical by hydrogen abstract mechanism and the high antioxidant activity depends on the substitution position of hydroxyls. Two active 7-, 8-hydroxyls facilitate the hydrogen abstraction due to the intramolecular hydrogen bond and the resonance effect makes 4-hydroxyl radical more stable.展开更多
Based on the wave equations in cylindrically layered structures and boundary conditions, the frequency equation for axisymmetric guided waves and the expression for sound fields in a cased borehole excited by a monop...Based on the wave equations in cylindrically layered structures and boundary conditions, the frequency equation for axisymmetric guided waves and the expression for sound fields in a cased borehole excited by a monopole or multipole source have been derived. The synthetic full waveforms excited by the monopole and dipole source are simulated using a real axis integration and FFT method. According to the axisymmetric guided wave modes, the synthetic full waveforms and the effects of the interface conditions on the sound field in a cased borehole have been analyzed and studied respectively. Numerical results indicate that it may be difficult to distinguish well bonded, poorly bonded or unbonded intermediate layer between the steel pipe and formation if only using a monopole source or dipole source. To properly estimate the case boundary conditions, a combination of monopole source logging with dipole source logging is suggested.展开更多
The adenine-thymine base pair was studied in the presence of hydroxyl radicals in order to probe the hydrogen bond effect. The results show that the hydrogen bonds have little effect on the hydroxylation and dehydroge...The adenine-thymine base pair was studied in the presence of hydroxyl radicals in order to probe the hydrogen bond effect. The results show that the hydrogen bonds have little effect on the hydroxylation and dehydrogenation happened at the sites, which are not involved in a hydrogen bond, while at the sites involved in hydrogen bond formation in the base pair, the reaction becomes more difficult, both in view of the free energy barrier and the exothermicity. With a 6-311 ++G(d,p) level of description, both B3LYP and MP2 methods confirm that the C8 site of isolated adenine has the highest possibility to form covalent bond with the hydroxyl radicals, though with different energetics: B3LYP predicts a barrierless pathway, while MP2 finds a transition state with an energy of 106.1 kJ/mol. For the dehydrogenation reactions, B3LYP method predicts that the free energy barrier increases in the order of HN9 〈 HN61 〈 HN62 〈 H2 〈 H8.展开更多
The iodine-catalyzed nucleophilic addition reactions of pyrrole, furan, or thiophene with acetone were studied in gas and solvent by the density functional theory at the level of Lanl2DZ^*. It was seen that the halog...The iodine-catalyzed nucleophilic addition reactions of pyrrole, furan, or thiophene with acetone were studied in gas and solvent by the density functional theory at the level of Lanl2DZ^*. It was seen that the halogen bond between iodine and carbonyl oxygen appeared to have an important catalytic effect on such reactions, and the first iodine molecule maximally diminished the barrier height by 41 kJ/mol, while the second iodine molecule could not improve such reactions largely. It was concluded that the C2-addition was generally more favorable than the C3-addition for the three heterocycles; however, iodine considerably more effectively catalyzed the C3-addition than the C2-addition for pyrrole. It was also revealed by PCM calculation that the iodine-catalyzed nucleophilic additions occurred more easily in solvent than in gas, which explained the experiment performed by Bandgar et al..展开更多
By means of the functionality distribution deduced and weight averaged functionality a and molecular size vb2, the sol-gel distribution equations of HTPB(Hydroxyl terminated polybutadiene) + TDI (Toluene-2, 4-diisocya...By means of the functionality distribution deduced and weight averaged functionality a and molecular size vb2, the sol-gel distribution equations of HTPB(Hydroxyl terminated polybutadiene) + TDI (Toluene-2, 4-diisocyanate) expressed by the model of Aai-B2 type polycondensation were solved and the elastic modulus were calculated. The experimental results of HTPB+TDI curing process indicate that a, vb2 and functionality distribution function are available basically.展开更多
An ab initio calculation was performed on the electronic structures of MoS,MoS_4^(2-) and Mo_2S_2 using relativistic effective core potential(RECP)for molybdenum,and non-relativistic ECP for sulfur.We predicted that t...An ab initio calculation was performed on the electronic structures of MoS,MoS_4^(2-) and Mo_2S_2 using relativistic effective core potential(RECP)for molybdenum,and non-relativistic ECP for sulfur.We predicted that the equilibrium bond length and the dissociation energy of MoS in ground state are 3.89 a.u.and 4.67 eV,respectively,and that the bond is a triple-bond.The ground state of MoS_4^(2-) in Td symmetry is ~1A_1 and π-bonding dominates σ-donation in the molybdenum- sulfur interaction.The Mo_2S_2 is a model contracted from bi-nuclear sulfur-bridged clusters,and the bonding orbitals 1 b_(1u),1b_1g and 1b_2g make the dominant contribution to the stabilization of sulfur- bridged species.展开更多
In this study, a new self-healing strategy that can simultaneously recover the corrosion resistance and the adhesion strength of coatings was introduced. The coating was based on a shape memory epoxy resin containing ...In this study, a new self-healing strategy that can simultaneously recover the corrosion resistance and the adhesion strength of coatings was introduced. The coating was based on a shape memory epoxy resin containing ethylene vinyl acetate(EVA) microspheres loaded with Ce(NO_(3))_(3)inhibitors, and was cured at a relatively high temperature to facilitate the fusion of adjacent microspheres for a strengthened self-healing effect. The electrochemical impedance spectroscopy(EIS) and scanning electrochemical microscopy(SECM) results demonstrated that the shape memory effect of epoxy matrix, the filling of molten EVA microspheres as well as the release of Ce(NO_(3))_(3)inhibitors contributed synergistically to suppress the corrosion reaction at the coating damage. After healing, the low frequency impedance modulus of the coatings containing Ce(NO_(3))_(3)-EVA microspheres was three orders of magnitude higher than that of the blank epoxy coating. The adhesion strength of the coatings containing Ce(NO_(3))_(3)-EVA microspheres on the metal substrate was also largely repaired thanks to the strong bonding effect of the EVA microspheres.展开更多
Cementing mechanism of bio-phosphate cement was investigated by Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), thermogravimetric-differential scanning calorimetry(TG-DSC) analysi...Cementing mechanism of bio-phosphate cement was investigated by Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), thermogravimetric-differential scanning calorimetry(TG-DSC) analysis and scanning electron microscopy(SEM). The results of FTIR and XPS show that Si-O bond and Si(2p) electron binding energy in sandstone cemented via chemical and microbiological methods are changed by the binding effects of barium hydrogen phosphate with quartz sand. Compared with barium hydrogen phosphate precipitated in solution, there were higher decomposition temperatures or melting points in sandstone. The FTIR, XPS, and TG-DSC results indicate that the microbial-induced and chemical precipitation of barium hydrogen phosphate can interact with quartz sand to generate van der Waals bond, which plays a role in the binding function between loose sand particles and barium hydrogen phosphate. SEM results show that barium hydrogen phosphate after chemical precipitation in sandstone has better dispersion than microbiological deposition. Therefore, barium hydrogen phosphate via chemical precipitation did not bind loose sand particles into sandstone.展开更多
The intrapair and interpair correlation energies of F -, HF and H 2F +systems are calculated and analyzed using MP2 OPT2 method of MELD program with cc PV5Z * basis set. From the analysis of pair correlation ene...The intrapair and interpair correlation energies of F -, HF and H 2F +systems are calculated and analyzed using MP2 OPT2 method of MELD program with cc PV5Z * basis set. From the analysis of pair correlation energies of these isoelectronic systems, it is found that the 1s F 2 pair correlation energy is transferable in these three isoelectronic systems. According to the definition of pair correlation contribution of one electron pair to a system, the pair correlation contribution values of these three systems are calculated. The correlation contribution values of inner electron pairs and H—F bonding electron pair in HF molecule with those in H 2F +system are compared. The results indicate that the bonding effect of a molecule is one of the important factors to influence electron correlation energy of the system. The comparison of correlation energy contributions including triple and quadruple excitations with those only including singles and doubles calculated with 6 311++G(d) basis set shows that the higher excitation correlation energy contribution gives more than 2% of the total correlation energy for these systems.展开更多
The elastic modulus of asphalt concrete(AC) is an important material parameter for pavement design.The prediction and determination of elastic modulus,however,largely depends on laboratory tests which cannot reflect e...The elastic modulus of asphalt concrete(AC) is an important material parameter for pavement design.The prediction and determination of elastic modulus,however,largely depends on laboratory tests which cannot reflect explicitly the influence of the microstructure of AC.To this end,a micromechanical model based on stepping scheme is adopted.Consideration is given to the influence of interfacial debonding and interlocking effect between the aggregates and asphalt mastic using the concept of effective bonding.Tests on asphalt mixture with various microstructures are conducted to verify the proposed approach.It is shown that the prediction is generally in agreement with experimental results.Parameters affecting the elastic modulus of AC are also discussed in light of the proposed method.展开更多
文摘Time-dependent density functional theory (TDDFT) and femtosecond transient absorption spectroscopy were used to investigate the photophysical properties of 2,3-dihydro-3-keto-lH- pyrido[3,2,1-kl]phenothiazine (PTZ4) and 3-keto-lH-pyrido[3,2,1-kl]phenothiazine (PTZ5). The calculated results obtained from TDDFT suggest that the red-shifts of the absorption spectra of these two fluorophores in methanol are due to the formation of hydrogen-bonded complexes at the ground state. Four conformers of PTZ4 were obtained by TDDFT. The two fluorescence peaks of PTZ4 in tetrahydrofuran (THF) came from the ICT states of the four conformers. The fluorescence of PTZ4 in THF showed a dependence on the excitation wavelength because of butterfly bending. The excited state dynamics of PTZ4 in THF and methanol were obtained by transient absorption spectroscopy. The lifetime of the excited PTZ4 in methanol was 53.8 ps, and its relaxation from the LE state to the ICT state was completed within several picoseconds. The short lifetime of excited PTZ4 in methanol was due to the formation of out-of-plane model hydrogen bonds between PTZ4 and methanol at the excited state.
基金Project supported by the Foundation of Education Department of Shaanxi Province,China(Grant No.16JK1402)
文摘The EPR parameters of trivalent Er(3+) ions doped in hexagonal Ga N crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be derived from the Kramers doublet Γ6. The EPR g-factors may be ascribed to the stronger covalent bonding and nephelauxetic effects compared with other rare-earth doped complexes, as a result of the mismatch of ionic radii of the impurity Er(3+)ion and the replaced Ga(3+) ion apart from the intrinsic covalency of host Ga N. Furthermore, the J–J mixing effects on the EPR parameters from the high-lying manifolds have been evaluated. It is found that the dominant J–J mixing contribution is from the manifold 2K(15/2), which accounts for about 2.5%. The next important J–J contribution arises from the crystal–field mixture between the ground state 4I(15/2) and the first excited state4I(13/2), and is usually less than 0.2%. The contributions from the rest states may be ignored.
文摘The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation. A proper control of oxygen content at the Al2O3-Ni interfacecan promote wetting at the intedece, and produce a mechanically interlocked and chemically strengthened intedece, causing most of the nickel particles to be stretched to failure and to expe-rience severe plastic deformation during crack propagation in the composite. Fracture toughnesstesting using a modified double cantilever beam method with in situ observation of crack prop-agation in a scanning electron microscope shows that the composite with the strengthenedinterface has a more desirable R-curve behaviour and a higher fracture toughness value than thenormal composite.
文摘Studies of direction of photoisomerization of retinal,retinonitrile,a- retinonitrile and a trienenitrile analog in different solvents with varying wave- lengths of excitation and reaction temperature led to the conclusion that the well known solvent dependent photochemistry of retinoids is due to selective excitation of the hydrogen bonded species.
基金Funded by the National Natural Science Foundation of China(50178026)the Cheung Kong Scholars Program Foundation of Chinese Ministry of Education(2009-37)
文摘The main reaction products were investigated by analysis of microstructure of alkali-activated ground granulated blast furnace slag (GGBFS) paste. An experimental research was performed on bond performance of alkali-activated GGBFS paste as a construction adhesive after exposure to 20-500℃. Through XRD analysis, a few calcium silicate hydrate, hydrotalcite and tetracalcium aluminate hydrate were determined as end products, and they were filled and packed each other at room temperature. In addition, akermanite dramatically increased at 800 ~C and above. The two key parameters, the ultimate load Pu.T and effective bond length Le, were determined using test data of carbon fiber-reinforced polymer (CFRP)-to-concrete bonded joints at elevated temperature. The experimental results indicate that the ultimate load Pu.T remains relatively stable initially and then decreases with increasing temperature. The effective bond length Le increases with increasing temperature except at 300℃. The proposed temperature-dependent effective bond length formula is shown to closely represent the test data.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21264016,11464047,and 21364016)the Joint Funds of Xinjiang Natural Science Foundation,China(Grant No.2015211C298)
文摘By employing molecular theory, we systematically investigate the shift of solubility of poly(N-isopropylacrylamide)(PNIPAM) brushes in sodium halide solutions. After considering PNIPAM–water hydrogen bonds, water–anion hydrogen bonds, and PNIPAM–anion bonds and their explicit coupling to the PNIPAM conformations, we find that increasing temperature lowers the solubility of PNIPAM, and results in a collapse of the layer at high enough temperatures. The combination of the three types of bonds would yield a decrease in the solubility of PNIPAM following the Hofmeister series: Na Cl>Na Br>Na I. PNIPAM–water hydrogen bonds are affected by water–anion hydrogen bonds and PNIPAM–anion bonds. The coupling of polymer conformations and the competition among the three types of bonds are essential for describing correctly a decrease in the solubility of PNIPAM brushes, which is determined by the free energy associated with the formation of the three types of bonds. Our results agree well with the experimental observations, and would be very important for understanding the shift of the lower critical solution temperature of PNIPAM brushes following the Hofmeister series.
基金Supported by the Key Subject Construction Project of Shanghai Educational Com mittee(No. 13980 70 2 )
文摘The hydrogen bond percentage and its temperature dependence of the three TPU samples synthesized from polytetrahydrofuran, 4,4'-diphenylmethane diisocyanate, N -methyl diethanol amine or 1,4-butane diol were studied by means of IR thermal analysis. The enthalpy and the entropy of the hydrogen bond dissociation were determined by the Van't Hoff plot.
基金Supported by National Natural Science Foundation of China(Nos.91226202,91426304)CAS Interdisciplinary Innovation Team Project
文摘The spark plasma sintering(SPS) method was used to study the mechanism of reaction interface between Zr and Ti3AlC2 with electric current going through it. It was found that electric current greatly reduced the bonding temperature of Zr and Ti3AlC2. By the micro-structure analysis of the interface through SEM/EDS, it was found that Al atoms diffused from the Ti3AlC2 substrate into the Zr side and reacted with Zr to form the Zr-Al compounds at the interface, which is the strengthening mechanism of Ti3AlC2-Zr bonding. The thickness of reaction layers(Zr-Al alloy) was from 0.879 to 13.945 mm depending on different sintering condition. Current direction, heating rate, soaking time, pulse patterns all influenced the diffusion of Al atoms which affected the joining quality of Zr and Ti3AlC2.
基金Supported by NNSFC(10901135,11171293)Natural Science Foundation of Yunnan Province(2008CD081,2010CC003)+1 种基金Educational Commission of Yunnan Province(2011Y296)Foundation of Honghe University(2010PY0104,10XJY113)
文摘Relationships between the structure characteristics of natural p-terphenyl com- pounds isolated from three edible mushrooms (Thelephora ganbajun, Thelephora aeronautical, and Boletopsis grisea) indigenous to China and their mechanism of antioxidant activity were studied. Geometry structures of terphenyl molecule and four corresponding radicals, bond dissociation energy (BDE), frontier orbitals (HOMO and LUMO) and single electron density were calculated using DFT methods (B3LYP/6-311G**). The computational results which are consistent with the experimental data well show that terphenyl molecule scavenges DPPH radical by hydrogen abstract mechanism and the high antioxidant activity depends on the substitution position of hydroxyls. Two active 7-, 8-hydroxyls facilitate the hydrogen abstraction due to the intramolecular hydrogen bond and the resonance effect makes 4-hydroxyl radical more stable.
基金The project is supported by the National Natural Science Foundation of China and Natural ScienceFoundation of Jiangsu Province
文摘Based on the wave equations in cylindrically layered structures and boundary conditions, the frequency equation for axisymmetric guided waves and the expression for sound fields in a cased borehole excited by a monopole or multipole source have been derived. The synthetic full waveforms excited by the monopole and dipole source are simulated using a real axis integration and FFT method. According to the axisymmetric guided wave modes, the synthetic full waveforms and the effects of the interface conditions on the sound field in a cased borehole have been analyzed and studied respectively. Numerical results indicate that it may be difficult to distinguish well bonded, poorly bonded or unbonded intermediate layer between the steel pipe and formation if only using a monopole source or dipole source. To properly estimate the case boundary conditions, a combination of monopole source logging with dipole source logging is suggested.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11025524 and 11161130520)the National Basic Research Program of China (Grant No.2010CB832903)+2 种基金the Natural Science Foundation of Guizhou Province of China (Grant No.J20122141)the Fund in the framework of a Frontier of Novelty Program of the Chinese Academy of Sciences for one of the authors (Wang Dong-Qi) (Grant No.Y1515540U1)the Research Fund for the Doctoral Program of Jiangxi Science and Technology Normal University (Grant No.3000990110)
文摘The adenine-thymine base pair was studied in the presence of hydroxyl radicals in order to probe the hydrogen bond effect. The results show that the hydrogen bonds have little effect on the hydroxylation and dehydrogenation happened at the sites, which are not involved in a hydrogen bond, while at the sites involved in hydrogen bond formation in the base pair, the reaction becomes more difficult, both in view of the free energy barrier and the exothermicity. With a 6-311 ++G(d,p) level of description, both B3LYP and MP2 methods confirm that the C8 site of isolated adenine has the highest possibility to form covalent bond with the hydroxyl radicals, though with different energetics: B3LYP predicts a barrierless pathway, while MP2 finds a transition state with an energy of 106.1 kJ/mol. For the dehydrogenation reactions, B3LYP method predicts that the free energy barrier increases in the order of HN9 〈 HN61 〈 HN62 〈 H2 〈 H8.
基金the Natural Science Foundation of Zhejiang Province,China(No.Y406374)
文摘The iodine-catalyzed nucleophilic addition reactions of pyrrole, furan, or thiophene with acetone were studied in gas and solvent by the density functional theory at the level of Lanl2DZ^*. It was seen that the halogen bond between iodine and carbonyl oxygen appeared to have an important catalytic effect on such reactions, and the first iodine molecule maximally diminished the barrier height by 41 kJ/mol, while the second iodine molecule could not improve such reactions largely. It was concluded that the C2-addition was generally more favorable than the C3-addition for the three heterocycles; however, iodine considerably more effectively catalyzed the C3-addition than the C2-addition for pyrrole. It was also revealed by PCM calculation that the iodine-catalyzed nucleophilic additions occurred more easily in solvent than in gas, which explained the experiment performed by Bandgar et al..
文摘By means of the functionality distribution deduced and weight averaged functionality a and molecular size vb2, the sol-gel distribution equations of HTPB(Hydroxyl terminated polybutadiene) + TDI (Toluene-2, 4-diisocyanate) expressed by the model of Aai-B2 type polycondensation were solved and the elastic modulus were calculated. The experimental results of HTPB+TDI curing process indicate that a, vb2 and functionality distribution function are available basically.
文摘An ab initio calculation was performed on the electronic structures of MoS,MoS_4^(2-) and Mo_2S_2 using relativistic effective core potential(RECP)for molybdenum,and non-relativistic ECP for sulfur.We predicted that the equilibrium bond length and the dissociation energy of MoS in ground state are 3.89 a.u.and 4.67 eV,respectively,and that the bond is a triple-bond.The ground state of MoS_4^(2-) in Td symmetry is ~1A_1 and π-bonding dominates σ-donation in the molybdenum- sulfur interaction.The Mo_2S_2 is a model contracted from bi-nuclear sulfur-bridged clusters,and the bonding orbitals 1 b_(1u),1b_1g and 1b_2g make the dominant contribution to the stabilization of sulfur- bridged species.
基金supported by the National Natural Science Foundation of China (Nos. 51771029 and 51901015)。
文摘In this study, a new self-healing strategy that can simultaneously recover the corrosion resistance and the adhesion strength of coatings was introduced. The coating was based on a shape memory epoxy resin containing ethylene vinyl acetate(EVA) microspheres loaded with Ce(NO_(3))_(3)inhibitors, and was cured at a relatively high temperature to facilitate the fusion of adjacent microspheres for a strengthened self-healing effect. The electrochemical impedance spectroscopy(EIS) and scanning electrochemical microscopy(SECM) results demonstrated that the shape memory effect of epoxy matrix, the filling of molten EVA microspheres as well as the release of Ce(NO_(3))_(3)inhibitors contributed synergistically to suppress the corrosion reaction at the coating damage. After healing, the low frequency impedance modulus of the coatings containing Ce(NO_(3))_(3)-EVA microspheres was three orders of magnitude higher than that of the blank epoxy coating. The adhesion strength of the coatings containing Ce(NO_(3))_(3)-EVA microspheres on the metal substrate was also largely repaired thanks to the strong bonding effect of the EVA microspheres.
基金supported by the National Natural Science Foundation of China(Grant No.51372038)Scientific Research Foundation of Graduate School of Southeast University(Grant No.YBJJ1453)333 Project of Jiangsu Province
文摘Cementing mechanism of bio-phosphate cement was investigated by Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), thermogravimetric-differential scanning calorimetry(TG-DSC) analysis and scanning electron microscopy(SEM). The results of FTIR and XPS show that Si-O bond and Si(2p) electron binding energy in sandstone cemented via chemical and microbiological methods are changed by the binding effects of barium hydrogen phosphate with quartz sand. Compared with barium hydrogen phosphate precipitated in solution, there were higher decomposition temperatures or melting points in sandstone. The FTIR, XPS, and TG-DSC results indicate that the microbial-induced and chemical precipitation of barium hydrogen phosphate can interact with quartz sand to generate van der Waals bond, which plays a role in the binding function between loose sand particles and barium hydrogen phosphate. SEM results show that barium hydrogen phosphate after chemical precipitation in sandstone has better dispersion than microbiological deposition. Therefore, barium hydrogen phosphate via chemical precipitation did not bind loose sand particles into sandstone.
文摘The intrapair and interpair correlation energies of F -, HF and H 2F +systems are calculated and analyzed using MP2 OPT2 method of MELD program with cc PV5Z * basis set. From the analysis of pair correlation energies of these isoelectronic systems, it is found that the 1s F 2 pair correlation energy is transferable in these three isoelectronic systems. According to the definition of pair correlation contribution of one electron pair to a system, the pair correlation contribution values of these three systems are calculated. The correlation contribution values of inner electron pairs and H—F bonding electron pair in HF molecule with those in H 2F +system are compared. The results indicate that the bonding effect of a molecule is one of the important factors to influence electron correlation energy of the system. The comparison of correlation energy contributions including triple and quadruple excitations with those only including singles and doubles calculated with 6 311++G(d) basis set shows that the higher excitation correlation energy contribution gives more than 2% of the total correlation energy for these systems.
基金supported by the National Natural Science Foundation of China (Nos. 10725210 and 50808159)the National Basic Re-search Program (973) of China (No. 2009CB623204)
文摘The elastic modulus of asphalt concrete(AC) is an important material parameter for pavement design.The prediction and determination of elastic modulus,however,largely depends on laboratory tests which cannot reflect explicitly the influence of the microstructure of AC.To this end,a micromechanical model based on stepping scheme is adopted.Consideration is given to the influence of interfacial debonding and interlocking effect between the aggregates and asphalt mastic using the concept of effective bonding.Tests on asphalt mixture with various microstructures are conducted to verify the proposed approach.It is shown that the prediction is generally in agreement with experimental results.Parameters affecting the elastic modulus of AC are also discussed in light of the proposed method.