a-C:F films are deposited by microwave electron cyclotron resonance (ECR)plasma chemical vapor deposition (CVD) using trifluoromethane (CHF3) and benzene (C6H6) as source gases at different microwave powers. The radic...a-C:F films are deposited by microwave electron cyclotron resonance (ECR)plasma chemical vapor deposition (CVD) using trifluoromethane (CHF3) and benzene (C6H6) as source gases at different microwave powers. The radicals in plasma originating from source gases dissociation are analyzed by relative irradiance measurement. The bonding configurations and binding state of a-C:F films are measured with Fourier-transformed infrared spectrometer (FTIR) and x-ray photoelectron spectroscopy (XPS). The results show that a-C:F films are mainly composed of CF radical at lower powers but of CF2 radical at higher powers. The deposition of films is related to the radicals generated in plasma and the main bonding configurations are dependent on the ratio of CF to CF2 radicals in films.展开更多
TiO_2 films were coated on the surface of diamond particles using a sol-gel method. The effects of heat treatment temperature on the morphology, phase composition and chemical bond of diamond particles coated with TiO...TiO_2 films were coated on the surface of diamond particles using a sol-gel method. The effects of heat treatment temperature on the morphology, phase composition and chemical bond of diamond particles coated with TiO2 films were investigated through SEM, TEM, X-ray diffraction analysis, Raman spectroscopy, FTIR, and XPS. The results showed that when being heat-treated at 600 ℃, the amorphous TiO_2 film transfered to the anatase film which bonded well with diamond substrate. Meanwhile, the Ti-O-C bond formed between TiO2 film and diamond substrate. When being heat-treated at 800 ℃, TiO2 film was still anatase, and partial diamond began to graphitize. The graphitizated carbon could also form the Ti-O-C bond with TiO_2 film, although TiO_2 film would tend to crack in this case.展开更多
Ti-containing carbon films were deposited by using magnetron sputtering deposition. The composition and microstructure of the carbon films were characterized in detail by combining the techniques of Rutherford backsca...Ti-containing carbon films were deposited by using magnetron sputtering deposition. The composition and microstructure of the carbon films were characterized in detail by combining the techniques of Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). It is found that carbon films contain Ti 18 at pct; after Ti incorporation, the films consist of titanium carbide; C1s peak appears at 283.4 eV and it could be divided into 283.29 and 284.55 eV, representing sp2 and sp3, respectively, and sp2 is superior to sp3. This Ti-containing film with dominating sp2 bonds is nanocomposites with nanocrystalline TiC clusters embedded in an amorphous carbon matrix, which could be proved by XRD and TEM.展开更多
The microstructure evolution and oxide film behavior in ultrasound-assisted transient liquid phase(U-TLP) bonding of Mg alloy were investigated by applying different ultrasonic time at 460?C with brass interlayer i...The microstructure evolution and oxide film behavior in ultrasound-assisted transient liquid phase(U-TLP) bonding of Mg alloy were investigated by applying different ultrasonic time at 460?C with brass interlayer in air. The results indicated that with increasing ultrasonic time, brass interlayer disappeared gradually and the Mg-Cu-Zn eutectic compounds were formed. The eutectic compounds in the joint decreased as the ultrasonic time increased further. The oxide removal process was divided into four steps. Continuous oxide film at the interface was partially fractured by ultrasonic vibration,and then suspended into liquid by undermining eutectic reaction. After that, the suspended oxide film was broken into small oxide fragments by ultrasonic cavitation effect, which was finally squeezed out of the joint by ultrasonic squeeze action. In addition, the mechanical properties of the joints were investigated. The maximum shear strength of the joint reached 105 MPa, which was 100% of base metal.展开更多
The Al22Si/ZL102 bimetal was designed and prepared by extrusion at near-eutectic temperature.The properties and fracture behaviors of different surface treatments between oxide film and zinc coating were compared betw...The Al22Si/ZL102 bimetal was designed and prepared by extrusion at near-eutectic temperature.The properties and fracture behaviors of different surface treatments between oxide film and zinc coating were compared between the Al22 Si and ZL102 bimetal.The average bonding strength of bimetal with intermittent oxide film interface was about 89.3MPa,which is higher than that of the bimetal fabricated by zinc coating method(about 76.3MPa).During the process of extrusion,the oxidation film was extruded to crush and the metal was extruded through the micro-cracks of the oxidation film,then the two surfaces were joined together.Altogether,the results showed that extrusion at near-eutectic temperature is favorable for achieving a high-quality metallurgical bonded interface.展开更多
文摘a-C:F films are deposited by microwave electron cyclotron resonance (ECR)plasma chemical vapor deposition (CVD) using trifluoromethane (CHF3) and benzene (C6H6) as source gases at different microwave powers. The radicals in plasma originating from source gases dissociation are analyzed by relative irradiance measurement. The bonding configurations and binding state of a-C:F films are measured with Fourier-transformed infrared spectrometer (FTIR) and x-ray photoelectron spectroscopy (XPS). The results show that a-C:F films are mainly composed of CF radical at lower powers but of CF2 radical at higher powers. The deposition of films is related to the radicals generated in plasma and the main bonding configurations are dependent on the ratio of CF to CF2 radicals in films.
基金Funded by National Natural Science Foundation of China(No.51375157)Shanghai Aerospace Eighth Research Institute SAST Foundation(No.2015044)+1 种基金the Central University Basic Scientific Research Business Expenses,State Key Laboratory of Silicate Materials for Architectures Program(No.SYSJJ2015-09)the Hunan Province Key Laboratory of Environmental Photocatalysis Application Technology Program(No.CCSU-KF-1504)
文摘TiO_2 films were coated on the surface of diamond particles using a sol-gel method. The effects of heat treatment temperature on the morphology, phase composition and chemical bond of diamond particles coated with TiO2 films were investigated through SEM, TEM, X-ray diffraction analysis, Raman spectroscopy, FTIR, and XPS. The results showed that when being heat-treated at 600 ℃, the amorphous TiO_2 film transfered to the anatase film which bonded well with diamond substrate. Meanwhile, the Ti-O-C bond formed between TiO2 film and diamond substrate. When being heat-treated at 800 ℃, TiO2 film was still anatase, and partial diamond began to graphitize. The graphitizated carbon could also form the Ti-O-C bond with TiO_2 film, although TiO_2 film would tend to crack in this case.
文摘Ti-containing carbon films were deposited by using magnetron sputtering deposition. The composition and microstructure of the carbon films were characterized in detail by combining the techniques of Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). It is found that carbon films contain Ti 18 at pct; after Ti incorporation, the films consist of titanium carbide; C1s peak appears at 283.4 eV and it could be divided into 283.29 and 284.55 eV, representing sp2 and sp3, respectively, and sp2 is superior to sp3. This Ti-containing film with dominating sp2 bonds is nanocomposites with nanocrystalline TiC clusters embedded in an amorphous carbon matrix, which could be proved by XRD and TEM.
基金supported by the China Postdoctoral Science Foundation (No. 2015M570093)the National Natural Science Foundation of China (Grant Nos. 51520105007, 51375328)the Specialized Research Fund for Doctoral Program of Higher Education (Grant No. 20130002110009)
文摘The microstructure evolution and oxide film behavior in ultrasound-assisted transient liquid phase(U-TLP) bonding of Mg alloy were investigated by applying different ultrasonic time at 460?C with brass interlayer in air. The results indicated that with increasing ultrasonic time, brass interlayer disappeared gradually and the Mg-Cu-Zn eutectic compounds were formed. The eutectic compounds in the joint decreased as the ultrasonic time increased further. The oxide removal process was divided into four steps. Continuous oxide film at the interface was partially fractured by ultrasonic vibration,and then suspended into liquid by undermining eutectic reaction. After that, the suspended oxide film was broken into small oxide fragments by ultrasonic cavitation effect, which was finally squeezed out of the joint by ultrasonic squeeze action. In addition, the mechanical properties of the joints were investigated. The maximum shear strength of the joint reached 105 MPa, which was 100% of base metal.
文摘The Al22Si/ZL102 bimetal was designed and prepared by extrusion at near-eutectic temperature.The properties and fracture behaviors of different surface treatments between oxide film and zinc coating were compared between the Al22 Si and ZL102 bimetal.The average bonding strength of bimetal with intermittent oxide film interface was about 89.3MPa,which is higher than that of the bimetal fabricated by zinc coating method(about 76.3MPa).During the process of extrusion,the oxidation film was extruded to crush and the metal was extruded through the micro-cracks of the oxidation film,then the two surfaces were joined together.Altogether,the results showed that extrusion at near-eutectic temperature is favorable for achieving a high-quality metallurgical bonded interface.