Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmen...Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmental service are inevitable challenges for turbine blades.Therefore,bonding techniques play a very important role in the manufacturing and repair of turbine blades.The transient liquid phase(TLP)bonding of DD5 Ni-based single crystal superalloy was performed using the designed H1 interlayer.A new third-generation Ni-based superalloy T1 powder was mixed with H1 powder as another interlayer to improve the mechanical properties of the bonded joints.The res-ults show that,such a designed H1 interlayer is beneficial to the improvement of shear strength of DD5 alloy bonded joints by adjusting the bonding temperature and the prolongation of holding time.The maximum shear strength at room temperature of the joint with H1 interlayer reached 681 MPa when bonded at 1260℃for 3 h.The addition of T1 powder can effectively reduce holding time or relatively lower bond-ing temperature,while maintaining relatively high shear strength.When 1 wt.%T1 powder was mixed into H1 interlayer,the maximum room temperature shear strength of the joint bonded at 1260℃reached 641 MPa,which could be obtained for only 1 h.Considering the bonding temperature and the efficiency,the acceptable process parameter of H1+5 wt.%T1 interlayer was 1240℃/2 h,and the room tem-perature shear strength reached 613 MPa.展开更多
The effects of joining temperature(TJ)and time(tJ)on microstructure of the transient liquid phase(TLP)bonding of GTD-111 superalloy were investigated.The bonding process was applied using BNi-3 filler at temperatures ...The effects of joining temperature(TJ)and time(tJ)on microstructure of the transient liquid phase(TLP)bonding of GTD-111 superalloy were investigated.The bonding process was applied using BNi-3 filler at temperatures of 1080,1120,and 1160℃ for isothermal solidification time of 195,135,and 90 min,respectively.Homogenization heat treatment was also applied to all of the joints.The results show that intermetallic and eutectic compounds such as Ni-rich borides,Ni−B−Si ternary compound and eutectic-γcontinuously are formed in the joint region during cooling.By increasing tJ,intermetallic phases are firstly reduced and eventually eliminated and isothermal solidification is completed as well.With the increase of the holding time at all of the three bonding temperatures,the thickness of the athermally solidified zone(ASZ)and the volume fraction of precipitates in the bonding area decrease and the width of the diffusion affected zone(DAZ)increases.Similar results are also obtained by increasing TJ from 1080 to 1160℃ at tJ=90 min.Furthermore,increasing the TJ from 1080 to 1160℃ leads to the faster elimination of intermetallic phases from the ASZ.However,these phases are again observed in the joint region at 1180℃.It is observed that by increasing the bonding temperature,the bonding width and the rate of dissolution of the base metal increase.Based on these results,increasing the homogenization time from 180 to 300 min leads to the elimination of boride precipitates in the DAZ and a high uniformity of the concentration of alloying elements in the joint region and the base metal.展开更多
The key parameters of the adhesive layer of a reinforcing patch are of great significance and affect the ability to suppress crack propagation in an Al–Li alloy patch-reinforced structure.This paper proposes a method...The key parameters of the adhesive layer of a reinforcing patch are of great significance and affect the ability to suppress crack propagation in an Al–Li alloy patch-reinforced structure.This paper proposes a method to determine the key parameters of the adhesive layer of adhesively bonded joints in the Al–Li alloy patch-reinforced structure.A zero-thickness cohesive zone model(CZM)was selected to simulate the adhesive layer’s fracture process,and an orthogonal simulation was designed to compare against the test results.A three-dimensional progressive damage model of an Al–Li alloy patch-reinforced structure with single-lap adhesively bonded joints was developed.The simulation’s results closely agree with the test results,demonstrating that this method of determining the key parameters is likely accurate.The results also verify the correctness of the cohesive strength and fracture energy,the two key parameters of the cohesive zone model.The model can accurately predict the strength and fracture process of adhesively bonded joints,and can be used in research to suppress crack propagation in Al–Li alloy patch-reinforced structures.展开更多
Micro-structure related behavior of diffusion bonding joints is a crucial issue in device and reactor fabrication of Micro Chemo Mechanical Systems.However,the previous studies have been focused on the macro mechanica...Micro-structure related behavior of diffusion bonding joints is a crucial issue in device and reactor fabrication of Micro Chemo Mechanical Systems.However,the previous studies have been focused on the macro mechanical performance of diffusion bonded joint,especially diffusion bonding conditions effects on tensile strength,shearing strength and fatigue strength.The research of interfacial micro-voids and microstructures evolution for failure mechanism has not been carried out for diffusion-bonded joints.An interfacial electrical resistance measuring method is proposed to evaluate the quality of bonded joints and verified by using two-dimensional finite-element simulation.The influences of micro void geometry on increments of resistance are analyzed and the relationship between bonded area fraction and resistance increment is established by theoretical analysis combined with simulated results.Metallographic inspections and micro-hardness testing are conducted near the interface of diffusion bonded joints.For the purpose of identifying the failure mechanisms of the joints,both microscopic tensile and fatigue tests are conducted on the self-developed in-situ microscopic fatigue testing system.Based on the microscopic observations,the mechanism of interfacial failure is addressed.The observation result shows that for 316LSS diffusion-bonded joints,microstructure evolution and effect of micro-voids play a key role in interfacial failure mechanism.Finally,a new life prediction model in terms of the increment of electrical resistance is developed and confirmed by the experimental results.The proposed study is initiated that constituted a primary interfacial failure mechanism on micron scale and provide the life prediction for reliability of components sealed by diffusion bonding.展开更多
Roller Compacted Concrete (RCC) has gained favorable recognition in hydropower and water resource dam construction. With optimization in construction technology and materials used for RCC Dams, cost is no longer a maj...Roller Compacted Concrete (RCC) has gained favorable recognition in hydropower and water resource dam construction. With optimization in construction technology and materials used for RCC Dams, cost is no longer a major disadvantage as compared to environmental impact, that is, wildlife habitat disruption. In as much as it has become optimal for investment in hydropower dam construction, the scourge for dam failure is still eminent, which is as a result of excessive seepage compromising the integrity of the mechanical properties of the dam. The aim of the paper is to highlight successful application methods in joint bonding to avoid excessive seepage and reduce the autogenous healing to a few years of operation. In view of optimization, this paper presents a comprehensive study on the influences of interlayer joints bonding quality from RCC mix performances and how it consolidates the RCC layers to withstand the shear strength along the interface, especially on the high dams. The case study is the RCC dam at the 750 MW Kafue Gorge Lower Hydropower Station. The scope of the study reviews the joint type judged by Modified Maturity Factor (MMF) with joint surface long time exposed in regions with dry and high temperature, technical measures of layer bonding quality control under condition of long time joint surface exposure, effects of joints shear strength and impermeability of the RCC layers when under the conditions of plastic and elasticity. The subtle observations made during the dam construction phases were with respect to the optimal use of materials in relation to RCC mix designs and the basis for equipment calibration for monitoring important data that can be referenced during analysis of shear forces acting on the RCC dam over time.展开更多
A composite structure with frame and skin based on cabin structure in a large space telescope is studied in this paper.The frame is composed of longitudinal and transverse beams with hybrid bonded/bolted joints,and th...A composite structure with frame and skin based on cabin structure in a large space telescope is studied in this paper.The frame is composed of longitudinal and transverse beams with hybrid bonded/bolted joints,and the skin is connected to the frame by bolts.Tensile tests are conducted on the structure by a set of test stand.It is observed that residual deformation occurs in the first test of the structure,which is attributed to the relative sliding between the skin and frame because of bolt-hole clearances.The high tightening torque and the increased number of the skin-frame bolts contribute to the high stiffness of the structure.A finite element model(FEM)of this composite structure is established,and the simulation model is verified by the experimental results.The FEM is contrastively analyzed with different frame joints,and it is found that adhesive joining in the hybrid bonded/bolted joints enhances the stiffness of the structure significantly.Given that adhesive plays a leading role in the stiffness of the hybrid joints,Tie contact in FEM is proposed to simulate bonded or hybrid joints when studying the stiffness performance of undamaged structure.展开更多
The majority of vehicle structural failures originate from joint areas.Cyclic loading is one of the primary factors in joint failures,making the fatigue performance of joints a critical consideration in vehicle struct...The majority of vehicle structural failures originate from joint areas.Cyclic loading is one of the primary factors in joint failures,making the fatigue performance of joints a critical consideration in vehicle structure design.The use of traditional fatigue analysis methods is constrained by the absence of adhesive life data and the wide variety of joint geometries.Therefore,there is a pressing need for an accurate fatigue life estimation method for the joints in the automotive industry.In this work,we proposed a data-driven approach embedding physical knowledge-guided parameters based on experimental data and finite element analysis(FEA)results.Different machine learning(ML)algorithms are adopted to investigate the fatigue life of three typical adhesive joints,namely lap shear,coach peel and KSII joints.After the feature engineering and tuned process of the ML models,the preferable model using the Gaussian process regression algorithm is established,fed with eight input parameters,namely thicknesses of the substrates,line forces and bending moments of the adhesive bonded joints obtained from FEA.The proposed method is validated with the test data set and part-level physical tests with complex loading states for an unbiased evaluation.It demonstrates that for life prediction of adhesive joints,the data-driven solutions can constitute an improvement over conventional solutions.展开更多
Transverse crack often occurs in the trailing edge region of the bladewhen subjected to the excessive edgewise fatigue load.In this paper a refined model was established through local mesh refinement methods in order ...Transverse crack often occurs in the trailing edge region of the bladewhen subjected to the excessive edgewise fatigue load.In this paper a refined model was established through local mesh refinement methods in order to investigate the initiation mechanism of crack and its extension in blade trailing edge.The material stress around the crack in trailing edge region under different thicknesses is calculated based on the fracture mechanics theory.The factors affecting the fatigue robustness of blade trailing edge are concluded by investigating the results of finite element analysis and coupons test.Compared with the laminate,the lower fatigue strength of the adhesive is the cause of the transverse crack of the adhesive joint at the trailing edge.The increase of the adhesive thickness at the adhesive joint will significantly increase the stress concentration factor at the crack region and accelerate the crack extension of the laminate.In final,a practical design scheme to prevent crack initiation is given for the manufacture of the wind turbine blade.展开更多
In order to study themechanical properties of Z-pins reinforced laminated composite single-lap adhesively bonded joint under un-directional static tensile load,damage failure analysis of the joint was carried out byme...In order to study themechanical properties of Z-pins reinforced laminated composite single-lap adhesively bonded joint under un-directional static tensile load,damage failure analysis of the joint was carried out bymeans of test and numerical simulation.The failure mode and mechanism of the joint were analyzed by tensile failure experiments.According to the experimental results,the joint exhibits mixed failure,and the ultimate failure is Z-pins pulling out of the adherend.In order to study the failure mechanism of the joint,the finite element method is used to predict the failure strength.The numerical results are in good agreement with the experimental results,and the error is 6.0%,which proves the validity of the numerical model.Through progressive damage failure analysis,it is found that matrix tensile failure of laminate at the edge of Z-pins occurs first,then adhesive layer failure-proceeds at the edge of Z-pins,and finally matrix-fiber shear failure of the laminate takes place.With the increase of load,the matrix-fiber shear failure expands gradually in the X direction,and at the same time,the matrix tensile failure at the hole edge gradually extends in different directions,which is consistent with the experimental results.展开更多
A new analytical study on stresses around a post-tensioned anchor in rocks with two perpendicular joint sets is presented. The assumptions of orthotropic elastic rock with plane strain conditions are made in derivatio...A new analytical study on stresses around a post-tensioned anchor in rocks with two perpendicular joint sets is presented. The assumptions of orthotropic elastic rock with plane strain conditions are made in derivation of the formulations. A tri-linear bond-slip constitutive law is used for modeling the tendon-grout interface behavior and debonding of this interface. The bearing plate width is also considered in the analysis. The obtained solutions are in the integral forms and numerical techniques that have been used for evaluation. In the illustrative example given, the major principal stress is compressive in the anchor free zone and compressive stress concentrations of 815 k Pa and 727 k Pa(for the anchor load of 300 k N) are observed under the bearing plate and the bond length proximal end, respectively. However, large values of tensile stresses with the maximum of-434 k Pa are formed at the bond length distal end. The results obtained using the proposed solution are compared very those of numerical method(FEM).展开更多
With the use of Ti/Ni/Cu/Ni multiple foils as interlayer,carbon/carbon(C/C) composite was bonded to Nibased superalloy GH3044 by partial transient liquid-phase bonding technique.The effect of bonding temperature on ...With the use of Ti/Ni/Cu/Ni multiple foils as interlayer,carbon/carbon(C/C) composite was bonded to Nibased superalloy GH3044 by partial transient liquid-phase bonding technique.The effect of bonding temperature on the microstructures and strengths of the joints was investigated.The results showed that gradient structural multiple interlayers composed of ‘‘C–Ti reaction layer/Ti–Ni intermetallic compound layer/Ni–Cu sosoloid/residual Cu layer/Ni-GH3044 diffusion layer'' were formed between C/C composite and GH3044.The shear strength of the C/C composite/GH3044 joint reached the highest value of 26.1 MPa when the bonding temperature was 1,030 °C.In addition,the fracture morphology showed that the fracture mode changed with the increase of bonding temperature.展开更多
Hybrid joints have better tensile properties than pure bonded and bolted bolts,and are increasingly used in the aerospace field.Tensile tests are carried out for the Hybrid Bonded/Bolted(HBB)joints of Carbon Fiber Rei...Hybrid joints have better tensile properties than pure bonded and bolted bolts,and are increasingly used in the aerospace field.Tensile tests are carried out for the Hybrid Bonded/Bolted(HBB)joints of Carbon Fiber Reinforced Polymer(CFRP)laminate and titanium alloy plate under different bolt numbers,and the corresponding load–displacement curves are obtained.At the same time,based on Continuum Damage Mechanics(CDM)theory,which is derived from 3D Hashin failure criteria,and a Cohesive Zone Model(CZM),the tensile strength prediction model of the composite laminate-titanium alloy plate multi-bolted HBB joint was established,and the numerical simulation results were in good agreement with the experimental height,which validate the feasibility of the model.The difference in the bearing capacity of HBB joints under different numbers of bolts is compared and analyzed.On this basis,the influence of inter-bolt distance on the tensile properties of the HBB joints is explored.The results show that the double-nail HBB joints can effectively improve the end warpage and low bearing capacity of the single-nail HBB joints.The tensile failure load of the double-nail HBB joints under the standard lap width(30 mm)is 82.6%higher than that of the single nail,the tensile failure load of the three-bolt HBB joints is 34.1%higher than that of the double nail.For the three-bolt HBB joint,the joint strength is controlled by the adhesive and the external bolt,while the internal bolt is redundant,the hybrid joint can be simplified by reducing the middle bolt.The inter-bolt distance has a great influence on the failure load of the hybrid joint.Increasing the inter-bolt distance can effectively improve the bearing capacity of the structure.展开更多
Hybrid bonded/bolted(HBB) joint has been widely used in engineering practice because it can overcome the potential weakness of pure bonded and pure bolted joints. However, studies on HBB joint are still at the initial...Hybrid bonded/bolted(HBB) joint has been widely used in engineering practice because it can overcome the potential weakness of pure bonded and pure bolted joints. However, studies on HBB joint are still at the initial stage. In this paper, tensile properties of a composite–metal singlelap HBB joint was investigated experimentally. And a detailed finite element model(FEM) was established to simulate the tensile behavior of the joint. The model was verified by the experimental results. Then the damage propagation and load transfer mechanism were explored based on the FEM. The results show that the HBB joint can provide multi-load transmission paths and resist damage propagation in the adhesive. The HBB joint has higher strength and energy absorption capacity than the pure bonded joint. And the HBB joint has greater initial damage load and tensile stiffness than pure bolted joint. Adhesive fillets can obviously improve the tensile performances of the HBB joint. Lateral stiffness of the joint boundary and testing machine show obvious effects on tensile performances of single-lap hybrid joints.展开更多
基金supported by the National Science and Technology Major Project(2017-VI-0009-0080)the Key-Area Research and Development Program of Guangdong Province(2019B010935001)+1 种基金Shenzhen Science and Technology Plan(Project No.JSGG20210802093205015)Industry and Information Technology Bureau of Shenzhen Municipality(Project No.201806071354163490).
文摘Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmental service are inevitable challenges for turbine blades.Therefore,bonding techniques play a very important role in the manufacturing and repair of turbine blades.The transient liquid phase(TLP)bonding of DD5 Ni-based single crystal superalloy was performed using the designed H1 interlayer.A new third-generation Ni-based superalloy T1 powder was mixed with H1 powder as another interlayer to improve the mechanical properties of the bonded joints.The res-ults show that,such a designed H1 interlayer is beneficial to the improvement of shear strength of DD5 alloy bonded joints by adjusting the bonding temperature and the prolongation of holding time.The maximum shear strength at room temperature of the joint with H1 interlayer reached 681 MPa when bonded at 1260℃for 3 h.The addition of T1 powder can effectively reduce holding time or relatively lower bond-ing temperature,while maintaining relatively high shear strength.When 1 wt.%T1 powder was mixed into H1 interlayer,the maximum room temperature shear strength of the joint bonded at 1260℃reached 641 MPa,which could be obtained for only 1 h.Considering the bonding temperature and the efficiency,the acceptable process parameter of H1+5 wt.%T1 interlayer was 1240℃/2 h,and the room tem-perature shear strength reached 613 MPa.
文摘The effects of joining temperature(TJ)and time(tJ)on microstructure of the transient liquid phase(TLP)bonding of GTD-111 superalloy were investigated.The bonding process was applied using BNi-3 filler at temperatures of 1080,1120,and 1160℃ for isothermal solidification time of 195,135,and 90 min,respectively.Homogenization heat treatment was also applied to all of the joints.The results show that intermetallic and eutectic compounds such as Ni-rich borides,Ni−B−Si ternary compound and eutectic-γcontinuously are formed in the joint region during cooling.By increasing tJ,intermetallic phases are firstly reduced and eventually eliminated and isothermal solidification is completed as well.With the increase of the holding time at all of the three bonding temperatures,the thickness of the athermally solidified zone(ASZ)and the volume fraction of precipitates in the bonding area decrease and the width of the diffusion affected zone(DAZ)increases.Similar results are also obtained by increasing TJ from 1080 to 1160℃ at tJ=90 min.Furthermore,increasing the TJ from 1080 to 1160℃ leads to the faster elimination of intermetallic phases from the ASZ.However,these phases are again observed in the joint region at 1180℃.It is observed that by increasing the bonding temperature,the bonding width and the rate of dissolution of the base metal increase.Based on these results,increasing the homogenization time from 180 to 300 min leads to the elimination of boride precipitates in the DAZ and a high uniformity of the concentration of alloying elements in the joint region and the base metal.
基金Project(51575535)supported by the National Natural Science Foundation of ChinaProject(2015CX002)supported by the Innovation-driven Plan in Central South University,China+2 种基金Project(zzyjkt2013-09B)supported by the Fund of the State Key Laboratory of High Performance Manufacturing,ChinaProject(2017zzts638)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2016RS2015)supported by the Scientific and Technological Leading Talent Projects of Hunan Province,China
文摘The key parameters of the adhesive layer of a reinforcing patch are of great significance and affect the ability to suppress crack propagation in an Al–Li alloy patch-reinforced structure.This paper proposes a method to determine the key parameters of the adhesive layer of adhesively bonded joints in the Al–Li alloy patch-reinforced structure.A zero-thickness cohesive zone model(CZM)was selected to simulate the adhesive layer’s fracture process,and an orthogonal simulation was designed to compare against the test results.A three-dimensional progressive damage model of an Al–Li alloy patch-reinforced structure with single-lap adhesively bonded joints was developed.The simulation’s results closely agree with the test results,demonstrating that this method of determining the key parameters is likely accurate.The results also verify the correctness of the cohesive strength and fracture energy,the two key parameters of the cohesive zone model.The model can accurately predict the strength and fracture process of adhesively bonded joints,and can be used in research to suppress crack propagation in Al–Li alloy patch-reinforced structures.
基金supported by National Natural Science Foundation of China(Grant No.50475068)
文摘Micro-structure related behavior of diffusion bonding joints is a crucial issue in device and reactor fabrication of Micro Chemo Mechanical Systems.However,the previous studies have been focused on the macro mechanical performance of diffusion bonded joint,especially diffusion bonding conditions effects on tensile strength,shearing strength and fatigue strength.The research of interfacial micro-voids and microstructures evolution for failure mechanism has not been carried out for diffusion-bonded joints.An interfacial electrical resistance measuring method is proposed to evaluate the quality of bonded joints and verified by using two-dimensional finite-element simulation.The influences of micro void geometry on increments of resistance are analyzed and the relationship between bonded area fraction and resistance increment is established by theoretical analysis combined with simulated results.Metallographic inspections and micro-hardness testing are conducted near the interface of diffusion bonded joints.For the purpose of identifying the failure mechanisms of the joints,both microscopic tensile and fatigue tests are conducted on the self-developed in-situ microscopic fatigue testing system.Based on the microscopic observations,the mechanism of interfacial failure is addressed.The observation result shows that for 316LSS diffusion-bonded joints,microstructure evolution and effect of micro-voids play a key role in interfacial failure mechanism.Finally,a new life prediction model in terms of the increment of electrical resistance is developed and confirmed by the experimental results.The proposed study is initiated that constituted a primary interfacial failure mechanism on micron scale and provide the life prediction for reliability of components sealed by diffusion bonding.
文摘Roller Compacted Concrete (RCC) has gained favorable recognition in hydropower and water resource dam construction. With optimization in construction technology and materials used for RCC Dams, cost is no longer a major disadvantage as compared to environmental impact, that is, wildlife habitat disruption. In as much as it has become optimal for investment in hydropower dam construction, the scourge for dam failure is still eminent, which is as a result of excessive seepage compromising the integrity of the mechanical properties of the dam. The aim of the paper is to highlight successful application methods in joint bonding to avoid excessive seepage and reduce the autogenous healing to a few years of operation. In view of optimization, this paper presents a comprehensive study on the influences of interlayer joints bonding quality from RCC mix performances and how it consolidates the RCC layers to withstand the shear strength along the interface, especially on the high dams. The case study is the RCC dam at the 750 MW Kafue Gorge Lower Hydropower Station. The scope of the study reviews the joint type judged by Modified Maturity Factor (MMF) with joint surface long time exposed in regions with dry and high temperature, technical measures of layer bonding quality control under condition of long time joint surface exposure, effects of joints shear strength and impermeability of the RCC layers when under the conditions of plastic and elasticity. The subtle observations made during the dam construction phases were with respect to the optimal use of materials in relation to RCC mix designs and the basis for equipment calibration for monitoring important data that can be referenced during analysis of shear forces acting on the RCC dam over time.
基金Supported by the National Natural Science Foundation of China(No.51805510)Science and Technology Development Plan Project of Jilin Province(No.20200201294JC)。
文摘A composite structure with frame and skin based on cabin structure in a large space telescope is studied in this paper.The frame is composed of longitudinal and transverse beams with hybrid bonded/bolted joints,and the skin is connected to the frame by bolts.Tensile tests are conducted on the structure by a set of test stand.It is observed that residual deformation occurs in the first test of the structure,which is attributed to the relative sliding between the skin and frame because of bolt-hole clearances.The high tightening torque and the increased number of the skin-frame bolts contribute to the high stiffness of the structure.A finite element model(FEM)of this composite structure is established,and the simulation model is verified by the experimental results.The FEM is contrastively analyzed with different frame joints,and it is found that adhesive joining in the hybrid bonded/bolted joints enhances the stiffness of the structure significantly.Given that adhesive plays a leading role in the stiffness of the hybrid joints,Tie contact in FEM is proposed to simulate bonded or hybrid joints when studying the stiffness performance of undamaged structure.
基金funded by the Construction Project of the National Natural Science Foundation(Grant No.52205377)National Key Research and Development Program(Grant No.2022YFB4601804)Key Basic Research Project of Suzhou(Grant Nos.#SJC2022029,#SJC2022031).
文摘The majority of vehicle structural failures originate from joint areas.Cyclic loading is one of the primary factors in joint failures,making the fatigue performance of joints a critical consideration in vehicle structure design.The use of traditional fatigue analysis methods is constrained by the absence of adhesive life data and the wide variety of joint geometries.Therefore,there is a pressing need for an accurate fatigue life estimation method for the joints in the automotive industry.In this work,we proposed a data-driven approach embedding physical knowledge-guided parameters based on experimental data and finite element analysis(FEA)results.Different machine learning(ML)algorithms are adopted to investigate the fatigue life of three typical adhesive joints,namely lap shear,coach peel and KSII joints.After the feature engineering and tuned process of the ML models,the preferable model using the Gaussian process regression algorithm is established,fed with eight input parameters,namely thicknesses of the substrates,line forces and bending moments of the adhesive bonded joints obtained from FEA.The proposed method is validated with the test data set and part-level physical tests with complex loading states for an unbiased evaluation.It demonstrates that for life prediction of adhesive joints,the data-driven solutions can constitute an improvement over conventional solutions.
基金This research was funded by Natural Science Foundation of Shandong Province(Grant No.ZR2019MEE076)National Natural Science Foundation of China(Grant No.52075305).
文摘Transverse crack often occurs in the trailing edge region of the bladewhen subjected to the excessive edgewise fatigue load.In this paper a refined model was established through local mesh refinement methods in order to investigate the initiation mechanism of crack and its extension in blade trailing edge.The material stress around the crack in trailing edge region under different thicknesses is calculated based on the fracture mechanics theory.The factors affecting the fatigue robustness of blade trailing edge are concluded by investigating the results of finite element analysis and coupons test.Compared with the laminate,the lower fatigue strength of the adhesive is the cause of the transverse crack of the adhesive joint at the trailing edge.The increase of the adhesive thickness at the adhesive joint will significantly increase the stress concentration factor at the crack region and accelerate the crack extension of the laminate.In final,a practical design scheme to prevent crack initiation is given for the manufacture of the wind turbine blade.
基金supported by Natural Science Talents Program of Lingnan Normal University(No.ZL2021011).
文摘In order to study themechanical properties of Z-pins reinforced laminated composite single-lap adhesively bonded joint under un-directional static tensile load,damage failure analysis of the joint was carried out bymeans of test and numerical simulation.The failure mode and mechanism of the joint were analyzed by tensile failure experiments.According to the experimental results,the joint exhibits mixed failure,and the ultimate failure is Z-pins pulling out of the adherend.In order to study the failure mechanism of the joint,the finite element method is used to predict the failure strength.The numerical results are in good agreement with the experimental results,and the error is 6.0%,which proves the validity of the numerical model.Through progressive damage failure analysis,it is found that matrix tensile failure of laminate at the edge of Z-pins occurs first,then adhesive layer failure-proceeds at the edge of Z-pins,and finally matrix-fiber shear failure of the laminate takes place.With the increase of load,the matrix-fiber shear failure expands gradually in the X direction,and at the same time,the matrix tensile failure at the hole edge gradually extends in different directions,which is consistent with the experimental results.
文摘A new analytical study on stresses around a post-tensioned anchor in rocks with two perpendicular joint sets is presented. The assumptions of orthotropic elastic rock with plane strain conditions are made in derivation of the formulations. A tri-linear bond-slip constitutive law is used for modeling the tendon-grout interface behavior and debonding of this interface. The bearing plate width is also considered in the analysis. The obtained solutions are in the integral forms and numerical techniques that have been used for evaluation. In the illustrative example given, the major principal stress is compressive in the anchor free zone and compressive stress concentrations of 815 k Pa and 727 k Pa(for the anchor load of 300 k N) are observed under the bearing plate and the bond length proximal end, respectively. However, large values of tensile stresses with the maximum of-434 k Pa are formed at the bond length distal end. The results obtained using the proposed solution are compared very those of numerical method(FEM).
基金financially supported by the National Natural Science Foundation of China(Nos.51202193 and 51221001)the Fundamental Research Foundation of Northwestern Polytechnical University(No.GBKY1021)the‘‘111’’Project(No.08040)
文摘With the use of Ti/Ni/Cu/Ni multiple foils as interlayer,carbon/carbon(C/C) composite was bonded to Nibased superalloy GH3044 by partial transient liquid-phase bonding technique.The effect of bonding temperature on the microstructures and strengths of the joints was investigated.The results showed that gradient structural multiple interlayers composed of ‘‘C–Ti reaction layer/Ti–Ni intermetallic compound layer/Ni–Cu sosoloid/residual Cu layer/Ni-GH3044 diffusion layer'' were formed between C/C composite and GH3044.The shear strength of the C/C composite/GH3044 joint reached the highest value of 26.1 MPa when the bonding temperature was 1,030 °C.In addition,the fracture morphology showed that the fracture mode changed with the increase of bonding temperature.
基金co-supported by the National Natural Science Foundation of China(No.U1833116)Key Scientific Research Project of Colleges and Universities in Henan Province,China(No.20A460023)。
文摘Hybrid joints have better tensile properties than pure bonded and bolted bolts,and are increasingly used in the aerospace field.Tensile tests are carried out for the Hybrid Bonded/Bolted(HBB)joints of Carbon Fiber Reinforced Polymer(CFRP)laminate and titanium alloy plate under different bolt numbers,and the corresponding load–displacement curves are obtained.At the same time,based on Continuum Damage Mechanics(CDM)theory,which is derived from 3D Hashin failure criteria,and a Cohesive Zone Model(CZM),the tensile strength prediction model of the composite laminate-titanium alloy plate multi-bolted HBB joint was established,and the numerical simulation results were in good agreement with the experimental height,which validate the feasibility of the model.The difference in the bearing capacity of HBB joints under different numbers of bolts is compared and analyzed.On this basis,the influence of inter-bolt distance on the tensile properties of the HBB joints is explored.The results show that the double-nail HBB joints can effectively improve the end warpage and low bearing capacity of the single-nail HBB joints.The tensile failure load of the double-nail HBB joints under the standard lap width(30 mm)is 82.6%higher than that of the single nail,the tensile failure load of the three-bolt HBB joints is 34.1%higher than that of the double nail.For the three-bolt HBB joint,the joint strength is controlled by the adhesive and the external bolt,while the internal bolt is redundant,the hybrid joint can be simplified by reducing the middle bolt.The inter-bolt distance has a great influence on the failure load of the hybrid joint.Increasing the inter-bolt distance can effectively improve the bearing capacity of the structure.
文摘Hybrid bonded/bolted(HBB) joint has been widely used in engineering practice because it can overcome the potential weakness of pure bonded and pure bolted joints. However, studies on HBB joint are still at the initial stage. In this paper, tensile properties of a composite–metal singlelap HBB joint was investigated experimentally. And a detailed finite element model(FEM) was established to simulate the tensile behavior of the joint. The model was verified by the experimental results. Then the damage propagation and load transfer mechanism were explored based on the FEM. The results show that the HBB joint can provide multi-load transmission paths and resist damage propagation in the adhesive. The HBB joint has higher strength and energy absorption capacity than the pure bonded joint. And the HBB joint has greater initial damage load and tensile stiffness than pure bolted joint. Adhesive fillets can obviously improve the tensile performances of the HBB joint. Lateral stiffness of the joint boundary and testing machine show obvious effects on tensile performances of single-lap hybrid joints.