期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
DEM Analysis of Single-Particle Crushing Considering the Inhomogeneity of Material Properties
1
作者 Tao Zhang Wenxiong Huang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第1期26-39,共14页
Crushing characteristics of single particles are the basis of granular material simulation with discrete element method(DEM).To improve the universality and precision of crushable DEM model,inhomogeneous stiffness and... Crushing characteristics of single particles are the basis of granular material simulation with discrete element method(DEM).To improve the universality and precision of crushable DEM model,inhomogeneous stiffness and strength properties are introduced into the bonded particle method,with which the Weibull distribution and size effect of particle strength can be reproduced without deleting elementary balls.The issues of particle strength and carrying capacity under complex contact conditions are investigated in this work by symmetric loading tests,asymmetric loading tests,and ball-ball loading tests.Results of numerical experiments indicate that particle carrying capacity is significantly influenced by coordination numbers,the symmetry of contact points,as well as the relative size of its neighbors.Contact conditions also show impact on single-particle crushing categories and the origin position of inner particle cracks.The existing stress indexes and assumptions of particle crushing criterion are proved to be inappropriate for general loading cases.Both the inherent inhomogeneity and contact conditions of particles should be taken into consideration in the simulation of granular materials. 展开更多
关键词 Bonded particle method Inhomogeneous properties Size effect Coordination number SYMMETRY Relative size
原文传递
Revisiting the ionic diffusion mechanism in Li_(3)PS_(4) via the joint usage of geometrical analysis and bond valence method
2
作者 Li Pan Liwen Zhang +7 位作者 Anjiang Ye Shuting Chi Zheyi Zou Bing He Lanli Chen Qian Zhao Da Wang Siqi Shi 《Journal of Materiomics》 SCIE EI 2019年第4期688-695,共8页
Inorganic solid electrolytes have obvious advantages on safety and electrochemical stability compared to organic liquid electrolytes,but the advance on high ionic conductivity of typical electrolytes is still undergoi... Inorganic solid electrolytes have obvious advantages on safety and electrochemical stability compared to organic liquid electrolytes,but the advance on high ionic conductivity of typical electrolytes is still undergoing.Although the first-principles calculation in the ion migration simulation is an important strategy to develop high-performance solid electrolyte,the process is very time-consuming.Here,we propose an effective method by combining the geometrical analysis and bond valance sum calculation to obtain an approximate minimum energy path preliminarily,in parallel to pave the way for the interoperability of low-precision and high-precision ion transport calculation.Taking a promising electrolyte Li_(3)PS_(4) as an example,we revisit its Li-ionic transport behavior.Our calculated Li-ion pathways and the activation energies(the corresponding values:1.09 eV vs.0.88 eV vs.0.86 eV)in γ-,β- and α-Li_(3)PS_(4) are consistent with the ones obtained from the first-principles calculations.The variations of the position of P-ions lead the rearrangement of the host PS_(4) tetrahedron,affecting the diffusion positions of Li-ions and further enabling high Li^(+) conductivity in β-Li_(3)PS_(4). 展开更多
关键词 Solid electrolyte Conduction pathway Crystal structure analysis Geometric analysis Bond valence method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部