We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf...We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters.展开更多
Ultrafine-grained(UFG)AA1060 sheets were fabricated via five-cycle accumulative roll bonding(ARB)and subsequent three-pass cold rolling(298 K),or cryorolling(83 K and 173 K).Microstructures of the aluminum samples wer...Ultrafine-grained(UFG)AA1060 sheets were fabricated via five-cycle accumulative roll bonding(ARB)and subsequent three-pass cold rolling(298 K),or cryorolling(83 K and 173 K).Microstructures of the aluminum samples were examined via transmission electron microscopy,and their mechanical properties were measured via tensile and microhardness testing.Results indicate that ultrafine grains in ARB-processed sheets were further refined by subsequent rolling,and the grain size became finer with reducing rolling temperature.The mean grain size of 666 nm in the sheets subjected to ARB was refined to 346 or 266 nm,respectively,via subsequent cold rolling or cryorolling(83 K).Subsequent cryorolling resulted in ultrafine-grained sheets of higher strength and ductility than those of the sheets subjected to cold rolling.展开更多
The influences of rolling reduction and aluminum sheet initial thickness(AIT)on the thickness fluctuation of aluminum layer(TFA)of embedded aluminum?steel composite sheet produced by cold roll bonding were investigate...The influences of rolling reduction and aluminum sheet initial thickness(AIT)on the thickness fluctuation of aluminum layer(TFA)of embedded aluminum?steel composite sheet produced by cold roll bonding were investigated,the formation mechanism of TFA was analyzed and method to improve the thickness uniformity of the aluminum layer was proposed.The results showed that when the reduction increased,TFA increased gradually.When the reduction was lower than40%,AIT had negligible effect on the TFA,while TFA increased with the decrease of AIT when the reduction was higher than40%.The non-uniformities of the steel surface deformation and the interfacial bonding extent caused by the work-hardened steel surface layer,were the main reasons for the formation of TFA.Adopting an appropriate surface treatment can help to decrease the hardening extent of the steel surface for improving the deformation uniformity during cold roll bonding process,which effectively improved the aluminum thickness uniformity of the embedded aluminum/steel composite sheets.展开更多
Taking advantage of the progress of roll-bonding technology, the integrity of the material technology, and the development of the production and examination facilities of all the main carbon steels, stainless steels a...Taking advantage of the progress of roll-bonding technology, the integrity of the material technology, and the development of the production and examination facilities of all the main carbon steels, stainless steels and specialty alloys in Baosteel, the cladded flat new products, which combined both properties of base material and clad material ,have been developed and produced in large quantities. The product categories includes heavy plates with high alloy content and homogeneous distribution in thickness and carbon steel plates cladded with all kinds of stainless steels ,nickel alloys ,and titanium alloys. The double-sided and single-sided cladding hot roiled strips and cold rolled sheets were also commercially produced. Due to the combined properties of both the cladding material and backing material, all products show obvious improvement in properties when compared with solid material. The comparability with the existing production process and equipment laid a very solid foundation for high productivity.展开更多
The title complex, [ [ Co (Py) 2 (H20) 2 ( NO3 )2 ] ] n ( 1 ) was synthesized by liquid/liquid diffusion method at room temperature. The complex crystallizes in monoclinic, space group P2 (1)/C, with a = 0.8...The title complex, [ [ Co (Py) 2 (H20) 2 ( NO3 )2 ] ] n ( 1 ) was synthesized by liquid/liquid diffusion method at room temperature. The complex crystallizes in monoclinic, space group P2 (1)/C, with a = 0.8775(6)nm, b=1.171 5(8)nm, c=0.7518(5)nm, V=0.739 3(9)nm3, C10H14CoN4O8, Mr= 377.18, Dc=1.694g/cm^3, μ=1.210mm^-1, F(000)=386, Z=2, the final R=0.0229 and wR= 0.066 1 for 3 137 observed reflections (I〉2σ(I)). In the structure of 1, the center atom of cobalt revealed a centrosymmetric, six-coordinate structure, with two Py ligands, two monodentate nitrate groups and two water molecules. It is notable that a series of hydrogen bonds (O-H…O) formed two kinds of rings exist in the structure, which linked neighboring six-coordinate polymer into a two-dimensional H-bonding network, and then assembled into a three-dimensional supramolecular architecture through electrostatic and hydrophobic interaction. In the structure, supramolecular sheet was observed, which contains alte .rnative organic and inorganic layers.展开更多
This paper aims at exploring the effects of anti-seismic reinforcement with the fiber-reinforced polymer (FRP) material bonded to the dam surface in dam engineering. Time-history analysis was performed to simulate t...This paper aims at exploring the effects of anti-seismic reinforcement with the fiber-reinforced polymer (FRP) material bonded to the dam surface in dam engineering. Time-history analysis was performed to simulate the seismic failure process of a gravity dam that was assumed to be reinforced at the locations of slope discontinuity at the downstream surface, part of the upstream face, and the dam heel. A damage model considering the influence of concrete heterogeneity was used to model the nonlinearity of concrete. A bond-slip model was applied to the interface between FRP and concrete, and the reinforcement mechanism was analyzed through the bond stress and the stress in FRP. The results of the crack pattern, displacement, and acceleration of the reinforced dam were compared with those of the original one. It is shown that FRP, as a reinforcement material, postpones the occurrence of cracks and slows the crack propagation, and that cracks emanating from the upstream surface and downstream surface are not connected, meaning that the reinforced dam can retain water-impounding function when subjected to the earthquake. Anti-seismic reinforcement with FRP is therefore beneficial to improving the seismic resistant capability of concrete dams.展开更多
The law of microstructure evolution and mechanical properties of hot roll bonded Cu/Mo/Cu clad sheets were systematically investigated and the theoretical prediction model of the coefficient of thermal expansion(CTE)o...The law of microstructure evolution and mechanical properties of hot roll bonded Cu/Mo/Cu clad sheets were systematically investigated and the theoretical prediction model of the coefficient of thermal expansion(CTE)of Cu/Mo/Cu clad sheets was established successfully.The results show that the deformation of Cu and Mo layers was gradually coherent with an increase in rolling reduction and temperature and excellent interface bonding was achieved under the condition of a large rolling reduction.The development of the microstructure and texture through the thickness of Cu and Mo layers was inhomogeneous.This phenomenon can be attributed to the friction between the roller and sheet surface and the uncoordinated deformation between Cu and Mo.The tensile strength of the clad sheets increased with increasing rolling reduction and the elongation was gradually decreased.The CTE of Cu/Mo/Cu clad sheets was related to the volume fraction of Mo.The finite element method can simulate the deformation and stress distribution during the thermal expansion process.The simulation result indicates that the terminal face of the clad sheets was sunken inward.展开更多
The earthquake resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dea...The earthquake resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dealing with the failure analysis of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheets including bond slip of the anchored reinforcing bars at the foot of the columns is presented. It is based on the yield design theory with a mixed modeling of the structure, according to which the concrete material is treated as a classical two dimensional continuum, whereas the longitudinal reinforcing bars are regarded as one dimensional rods including bond slip at the foot of the columns. In shear reinforced zones both the shear CFRP sheets and transverse reinforcing bars are incorporated in the analysis through a homogenization procedure and they are only in tension. The approach is then implemented numerically by means of the finite element formulation. The numerical procedure produces accurate estimates for the loading carrying capacity of the shear members taken as an illustrative application by correlation with the experimental results, so the proposed approach is valid.展开更多
In order to study the characteristics of deformation joining of aluminum-stainless steel composite sheet, an applied example of this composite sheet was given. The conditions of the composite sheet were discussed, the...In order to study the characteristics of deformation joining of aluminum-stainless steel composite sheet, an applied example of this composite sheet was given. The conditions of the composite sheet were discussed, the optical micrographs and scanning electron micrographs were examined by contrast ways of deformation joining and braze joining. Simultaneously the analysis of energy spectrum was also conducted. The results indicate that the deformation joining composite sheet possesses high bonding strength, good corrosion resistance, less inclusions and less microcracks.展开更多
基金Supported by Innovation and Technology Fund (No.ITP/045/19AP)Commercial Research&Development (CRD) Funding Supported by Hong Kong Productivity Council (No.10008787)。
文摘We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters.
基金financial supports from the National Key Research and Development Program of China (No. 2019YFB2006500)the National Natural Science Foundation of China (No. 51674303)+2 种基金the Huxiang High-level Talent Gathering Project of Hunan Province, China (No. 2018RS3015)the Innovation Driven Program of Central South University, China (No. 2019CX006)the Research Fund of the Key Laboratory of High Performance Complex Manufacturing at Central South University, China。
文摘Ultrafine-grained(UFG)AA1060 sheets were fabricated via five-cycle accumulative roll bonding(ARB)and subsequent three-pass cold rolling(298 K),or cryorolling(83 K and 173 K).Microstructures of the aluminum samples were examined via transmission electron microscopy,and their mechanical properties were measured via tensile and microhardness testing.Results indicate that ultrafine grains in ARB-processed sheets were further refined by subsequent rolling,and the grain size became finer with reducing rolling temperature.The mean grain size of 666 nm in the sheets subjected to ARB was refined to 346 or 266 nm,respectively,via subsequent cold rolling or cryorolling(83 K).Subsequent cryorolling resulted in ultrafine-grained sheets of higher strength and ductility than those of the sheets subjected to cold rolling.
基金Project(2013AA031301)supported by National High-tech Research and Development Program of ChinaProject(51104016)supported by National Natural Science Foundation of ChinaProject(BM2014006)supported by Jiangsu Key Laboratory for Clad Materials,China
文摘The influences of rolling reduction and aluminum sheet initial thickness(AIT)on the thickness fluctuation of aluminum layer(TFA)of embedded aluminum?steel composite sheet produced by cold roll bonding were investigated,the formation mechanism of TFA was analyzed and method to improve the thickness uniformity of the aluminum layer was proposed.The results showed that when the reduction increased,TFA increased gradually.When the reduction was lower than40%,AIT had negligible effect on the TFA,while TFA increased with the decrease of AIT when the reduction was higher than40%.The non-uniformities of the steel surface deformation and the interfacial bonding extent caused by the work-hardened steel surface layer,were the main reasons for the formation of TFA.Adopting an appropriate surface treatment can help to decrease the hardening extent of the steel surface for improving the deformation uniformity during cold roll bonding process,which effectively improved the aluminum thickness uniformity of the embedded aluminum/steel composite sheets.
文摘Taking advantage of the progress of roll-bonding technology, the integrity of the material technology, and the development of the production and examination facilities of all the main carbon steels, stainless steels and specialty alloys in Baosteel, the cladded flat new products, which combined both properties of base material and clad material ,have been developed and produced in large quantities. The product categories includes heavy plates with high alloy content and homogeneous distribution in thickness and carbon steel plates cladded with all kinds of stainless steels ,nickel alloys ,and titanium alloys. The double-sided and single-sided cladding hot roiled strips and cold rolled sheets were also commercially produced. Due to the combined properties of both the cladding material and backing material, all products show obvious improvement in properties when compared with solid material. The comparability with the existing production process and equipment laid a very solid foundation for high productivity.
基金Sponsored by the National Natural Science Foundation of China(20571011,20771014)
文摘The title complex, [ [ Co (Py) 2 (H20) 2 ( NO3 )2 ] ] n ( 1 ) was synthesized by liquid/liquid diffusion method at room temperature. The complex crystallizes in monoclinic, space group P2 (1)/C, with a = 0.8775(6)nm, b=1.171 5(8)nm, c=0.7518(5)nm, V=0.739 3(9)nm3, C10H14CoN4O8, Mr= 377.18, Dc=1.694g/cm^3, μ=1.210mm^-1, F(000)=386, Z=2, the final R=0.0229 and wR= 0.066 1 for 3 137 observed reflections (I〉2σ(I)). In the structure of 1, the center atom of cobalt revealed a centrosymmetric, six-coordinate structure, with two Py ligands, two monodentate nitrate groups and two water molecules. It is notable that a series of hydrogen bonds (O-H…O) formed two kinds of rings exist in the structure, which linked neighboring six-coordinate polymer into a two-dimensional H-bonding network, and then assembled into a three-dimensional supramolecular architecture through electrostatic and hydrophobic interaction. In the structure, supramolecular sheet was observed, which contains alte .rnative organic and inorganic layers.
基金supported by the National Natural Science Foundation of China(Grant No.51009019)the State Key Development Program for Basic Research of China(Grant No.2013CB035905)
文摘This paper aims at exploring the effects of anti-seismic reinforcement with the fiber-reinforced polymer (FRP) material bonded to the dam surface in dam engineering. Time-history analysis was performed to simulate the seismic failure process of a gravity dam that was assumed to be reinforced at the locations of slope discontinuity at the downstream surface, part of the upstream face, and the dam heel. A damage model considering the influence of concrete heterogeneity was used to model the nonlinearity of concrete. A bond-slip model was applied to the interface between FRP and concrete, and the reinforcement mechanism was analyzed through the bond stress and the stress in FRP. The results of the crack pattern, displacement, and acceleration of the reinforced dam were compared with those of the original one. It is shown that FRP, as a reinforcement material, postpones the occurrence of cracks and slows the crack propagation, and that cracks emanating from the upstream surface and downstream surface are not connected, meaning that the reinforced dam can retain water-impounding function when subjected to the earthquake. Anti-seismic reinforcement with FRP is therefore beneficial to improving the seismic resistant capability of concrete dams.
基金financial supports from the National Natural Science Foundation of China (No.51421001)the Fundamental Research Funds for the Central Universities,China (Nos.2019CDQY CL001,2019CDCGCL204,2020CDJDPT001)the Research Project of State Key Laboratory of Vehicle NVH and Safety Technology,China (No.NVHSKL-201706)。
文摘The law of microstructure evolution and mechanical properties of hot roll bonded Cu/Mo/Cu clad sheets were systematically investigated and the theoretical prediction model of the coefficient of thermal expansion(CTE)of Cu/Mo/Cu clad sheets was established successfully.The results show that the deformation of Cu and Mo layers was gradually coherent with an increase in rolling reduction and temperature and excellent interface bonding was achieved under the condition of a large rolling reduction.The development of the microstructure and texture through the thickness of Cu and Mo layers was inhomogeneous.This phenomenon can be attributed to the friction between the roller and sheet surface and the uncoordinated deformation between Cu and Mo.The tensile strength of the clad sheets increased with increasing rolling reduction and the elongation was gradually decreased.The CTE of Cu/Mo/Cu clad sheets was related to the volume fraction of Mo.The finite element method can simulate the deformation and stress distribution during the thermal expansion process.The simulation result indicates that the terminal face of the clad sheets was sunken inward.
文摘The earthquake resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dealing with the failure analysis of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheets including bond slip of the anchored reinforcing bars at the foot of the columns is presented. It is based on the yield design theory with a mixed modeling of the structure, according to which the concrete material is treated as a classical two dimensional continuum, whereas the longitudinal reinforcing bars are regarded as one dimensional rods including bond slip at the foot of the columns. In shear reinforced zones both the shear CFRP sheets and transverse reinforcing bars are incorporated in the analysis through a homogenization procedure and they are only in tension. The approach is then implemented numerically by means of the finite element formulation. The numerical procedure produces accurate estimates for the loading carrying capacity of the shear members taken as an illustrative application by correlation with the experimental results, so the proposed approach is valid.
文摘In order to study the characteristics of deformation joining of aluminum-stainless steel composite sheet, an applied example of this composite sheet was given. The conditions of the composite sheet were discussed, the optical micrographs and scanning electron micrographs were examined by contrast ways of deformation joining and braze joining. Simultaneously the analysis of energy spectrum was also conducted. The results indicate that the deformation joining composite sheet possesses high bonding strength, good corrosion resistance, less inclusions and less microcracks.