期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Study on the Microstructure of Human Articular Cartilage/Bone Interface 被引量:4
1
作者 Yaxiong Liu Qin Lian +3 位作者 Jiankang He Jinna Zhao Zhongmin Jin Dichen Li 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第3期251-262,共12页
For improving the theory of gradient microstructure of cartilage/bone interface, human distal femurs were studied. Scanning Electron Microscope (SEM), histological sections and MicroCT were used to observe, measure ... For improving the theory of gradient microstructure of cartilage/bone interface, human distal femurs were studied. Scanning Electron Microscope (SEM), histological sections and MicroCT were used to observe, measure and model the micro- structure of cartilage/bone interface. The results showed that the cartilage/bone interface is in a hierarchical structure which is composed of four different tissue layers. The interlocking of hyaline cartilage and calcified cartilage and that of calcified car- tilage and subchondral bone are in the manner of"protrusion-pore" with average diameter of 17.0 gm and 34.1 lam respectively. In addition, the cancellous bone under the cartilage is also formed by four layer hierarchical structure, and the adjacent layers are connected by bone trabecula in the shape of H, I and Y, forming a complex interwoven network structure. Finally, the simplified structure model of the cartilage/bone interface was proposed according to the natural articular cartilage/bone interface. The simplified model is a 4-layer gradient biomimetic structure, which corresponds to four different tissues of natural cartilage/bone interface. The results of this work would be beneficial to the design of bionic scaffold for the tissue engineering of articular cartilage/bone. 展开更多
关键词 tissue engineering knee joint articular cartilage/bone interface of cartilage/bone
下载PDF
Improving the fretting biocorrosion of Ti6Al4V alloy bone screw by decorating structure optimised TiO2 nanotubes layer 被引量:2
2
作者 Jiajun Luo Maryam Tamaddon +4 位作者 Changyou Yan Shuanhong Ma Xiaolong Wang Feng Zhou Chaozong Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第14期47-55,共9页
TiO2 nanotubes(NT)has been demonstrated its potential in orthopaedic applications due to its enhanced surface wettability and bio-osteointegration.However,the fretting biocorrosion is the main concern that limited its... TiO2 nanotubes(NT)has been demonstrated its potential in orthopaedic applications due to its enhanced surface wettability and bio-osteointegration.However,the fretting biocorrosion is the main concern that limited its successfully application in orthopaedic application.In this study,a structure optimised thin TiO2 nanotube(SONT)layer was successfully created on Ti6Al4V bone screw,and its fretting corrosion performance was investigated and compared to the pristine Ti6Al4V bone screws and NT decorated screw in a bone-screw fretting simulation rig.The results have shown that the debonding TiO2 nanotube from the bone screw reduced significantly,as a result of structure optimisation.The SONT layer also exhibited enhanced bio-corrosion resistance compared pristine bone screw and conventionally NT modified bone screw.It is postulated that interfacial layer between TiO2 nanotube and Ti6Al4V substrate,generated during structure optimisation process,enhanced bonding of TiO2 nanotube layer to the Ti6Al4V bone screws that leading to the improvement in fretting corrosion resistance.The results highlighted the potential SONT in orthopaedic application as bone fracture fixation devices. 展开更多
关键词 bone implant interface bone screws Biomedical materials TiO2 nanotubes Fretting corrosion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部