期刊文献+
共找到2,028篇文章
< 1 2 102 >
每页显示 20 50 100
O-linkedβ-N-acetylglucosaminylation may be a key regulatory factor in promoting osteogenic differentiation of bone marrow mesenchymal stromal cells
1
作者 Xu-Chang Zhou Guo-Xin Ni 《World Journal of Stem Cells》 SCIE 2024年第3期228-231,共4页
Cumulative evidence suggests that O-linkedβ-N-acetylglucosaminylation(OGlcNAcylation)plays an important regulatory role in pathophysiological processes.Although the regulatory mechanisms of O-GlcNAcylation in tumors ... Cumulative evidence suggests that O-linkedβ-N-acetylglucosaminylation(OGlcNAcylation)plays an important regulatory role in pathophysiological processes.Although the regulatory mechanisms of O-GlcNAcylation in tumors have been gradually elucidated,the potential mechanisms of O-GlcNAcylation in bone metabolism,particularly,in the osteogenic differentiation of bone marrow mesenchymal stromal cells(BMSCs)remains unexplored.In this study,the literature related to O-GlcNAcylation and BMSC osteogenic differentiation was reviewed,assuming that it could trigger more scholars to focus on research related to OGlcNAcylation and bone metabolism and provide insights into the development of novel therapeutic targets for bone metabolism disorders such as osteoporosis. 展开更多
关键词 O-GLCNACYLATION Osteogenic differentiation bone marrow mesenchymal stromal cells OSTEOPOROSIS
下载PDF
Study on mechanism of increased allergenicity induced by Ara h 3 from roasted peanut using bone marrow-derived dendritic cells 被引量:1
2
作者 Minjia Wang Shuo Wang +3 位作者 Xiaodong Sun Zhirui Deng Bing Niu Qin Chen 《Food Science and Human Wellness》 SCIE CSCD 2023年第3期755-764,共10页
Little information was so far available about allergenic mechanism of the roasted peanut allergens during initial stages of allergy.The purpose of this study was to determine the influence of roasting(150℃,20 min)on ... Little information was so far available about allergenic mechanism of the roasted peanut allergens during initial stages of allergy.The purpose of this study was to determine the influence of roasting(150℃,20 min)on biochemical and biological properties of Ara h 3,a major peanut allergen.Allergenicity of roasted peanut emulsion to mice,differences in uptakes between Ara h 3 purified from raw peanuts(named as Ara h 3-Raw)and that purified from roasted peanuts(named as Ara h 3-Roasted)by bone marrow-derived dendritic cells(BMDCs)and the implication of cell surface receptors involving in uptake,and changes in glycosylation and structure of Ara h 3 after roasting were analyzed in this study.This study suggested that roasting increased allergenicity of peanut to BALB/c mice.Maillard reaction and structural changes of Ara h 3 induced by roasting significantly altered the uptake of Ara h 3-Roasted by BMDCs,and modified Ara h 3 fate in processes involved in immunogenicity and hyper allergenicity,indicating that food processing pattern can change food allergenicity. 展开更多
关键词 Roasted peanut Ara h 3 bone marrow-derived dendritic cells(BMDCs) ALLERGENICITY Maillard reactions
下载PDF
The immunomodulatory effects of bone marrow-derived mesenchymal stem cells on lymphocyte in spleens of aging rats
3
作者 Zhi-Hong Wang Zhi-Feng Lin +5 位作者 Yi-Ting Lai Ling-Ling Ding Huai-Cheng Wang Xing Chen Xiao-Ye Chen Hua-Ke Zeng 《Biomedical Engineering Communications》 2023年第3期1-6,共6页
Objective:To investigate the effects of bone marrow-derived mesenchymal stem cells(BMSCs)on the proliferation and secretion of IgM,IgG and IL-2 in spleen lymphocytes(L)of aging rats.Methods:BMSCs were isolated by the ... Objective:To investigate the effects of bone marrow-derived mesenchymal stem cells(BMSCs)on the proliferation and secretion of IgM,IgG and IL-2 in spleen lymphocytes(L)of aging rats.Methods:BMSCs were isolated by the whole bone marrow adherence method and characterized.A rat model of aging was produced by daily subcutaneous injection of D-galactose into the back of the neck.Rat spleen lymphocyte isolate kit to isolate spleen lymphocytes from aging rats and young rats.In vitro,the co-culture system of BMSCs and aging rats lymphocytes was established,and under the induction of mitogen LPS and ConA,the proliferative activity of lymphocytes in each group was detected by CCK-8 assay,the levels of IgM and IgG in the culture supernatant of each group was detected by ELISA,and the IL-2 radioimmunoassay kits were used to detect the content of IL-2 in the supernatant of each group.Results:(1)The isolated adherent cells showed the characteristics of BMSCs,including spindle-shaped morphology,high expression of CD29,CD44,low expression of CD34 and CD45,and osteogenic/adipogenic ability.(2)Under LPS induction,lymphocyte proliferative activity and secretion of immunoglobulin IgG were reduced in the aging group compared with the young group,and co-culture with BMSCs reversed this trend.(3)Under ConA induction,the IL-2 content of BMSCs co-cultured with aging lymphocytes was higher than that of aging lymphocytes alone(P<0.0001);the IL-2 content of CsA co-cultured with aging lymphocytes was lower than that of aging lymphocytes alone(P<0.0001).Conclusion:BMSCs have immunomodulatory effects on the spleen lymphocytes of aging rats in vitro. 展开更多
关键词 bone marrow-derived mesenchymal stem cell IMMUNOSENESCENCE LYMPHOCYTE IMMUNOMODULATION
下载PDF
In vitro differentiation of adipose-derived stem cells and bone marrow-derived stromal stem cells into neuronal-like cells 被引量:21
4
作者 Jin Zhou Guoping Tian +9 位作者 Jing'e Wang Xuefeng Cong Xingkai Wu Siyang Zhang Li Li Bing Xu Feng Zhu Xuedan Luo Jian Han Fengjie Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第19期1467-1472,共6页
Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analys... Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analysis by western blot and quantitative real-time PCR showed that protein levels of Nanog, Oct4, and Sox2, and mRNA levels of miR/125a/3p were decreased, while expression of insulin-like growth factor-2 and neuron specific enolase was increased. In comparison the generation of neuron specific enolase-positive cells was most successful when adipose-derived stem cells were co-cultured with Aβ1-40-treated PC12 cells. Our results demonstrate that adipose-derived stem cells and bone marrow-derived stromal stem cells exhibit trends of neuronal-like cell differentiation after co-culture with Aβ1-40-treated PC12 cells. This process may relate to a downregulation of miR-125a-3p mRNA expression and increased levels of insulin-like growth factor-2 expression. 展开更多
关键词 adipose-derived stem cells bone marrow-derived stromal stem cells DIFFERENTIATION NEURON miR-125a-3p neural regeneration
下载PDF
Effects of corneal stromal cell-and bone marrow-derived endothelial progenitor cell-conditioned media on the proliferation of corneal endothelial cells 被引量:1
5
作者 Meng-Yu Zhu Qin-Ke Yao +6 位作者 Jun-Zhao Chen Chun-Yi Shao Chen-Xi Yan Ni Ni Xian-Qun Fan Ping Gu Yao Fu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2016年第3期332-339,共8页
AIM: To explore the effects of conditioned media on the proliferation of corneal endothelial cells (CECa) and to compare the efficiency of different conditioned media (CM). METHODS: Rat CECs, corneal stromal cel... AIM: To explore the effects of conditioned media on the proliferation of corneal endothelial cells (CECa) and to compare the efficiency of different conditioned media (CM). METHODS: Rat CECs, corneal stromal cells (CSCs), bone marrow -derived endothelial progenitor cells (BEPCs), and bone marrow-derived mesenchymal stem cells (BMSCs) were isolated and cultured in vitra CM was collected from CSCs, BEPCs, and BMSCSo CECs were cultivated in different culture media. Cell morphology was recorded, and gene and protein expression were analyzed.~ RESULTS: After grown in CM for 5d, CECs in each experimental group remained polygonal, in a cobblestone- like monolayer arrangement. Immunocytofluorescence revealed positive expression of Na+/K+-ATP, aquaporin 1 (AQP1), and zonula occludens 1 (ZO-1). Based on quantitative polymerase chain reaction (qPCR) analysis, Na +/K +-ATP expression in CSC-CM was notably upregulated by 1.3-fold (+0.036) (P〈0.05, n=3). The expression levels of ZO-1, neuron specific enolase (NSE), Vimentin, paired homebox 6 (PAX6), and procollagen type VII (COL8A1) were notably upregulated in each experimental group. Each CM had a positive effect on CEC proliferation, and CSC-CM had the strongest effect on proliferation.~ CONCLUSION: CSC-CM, BEPC-CM, and BMSC-CM not only stimulated the proliferation of CECs, but also maintained the characteristic differentiated phenotypes necessary for endothelial functions. CSC-CM had the most notable effect on CEC proliferation. KEYWORDS: conditioned medium; corneal endothelial cell; corneal stromal cell; bone marrow-derived endothelial progenitor cell; proliferation 展开更多
关键词 conditioned medium corneal endothelialcell corneal stromal cell bone marrow-derived endothelialprogenitor cell PROLIFERATION
下载PDF
Senescent mesenchymal stem/stromal cells in pre-metastatic bone marrow of untreated advanced breast cancer patients
6
作者 FRANCISCO RAÚL BORZONE MARÍA BELÉN GIORELLO +6 位作者 LEANDRO MARCELO MARTINEZ MARÍA CECILIA SANMARTIN LEONARDO FELDMAN FEDERICO DIMASE EMILIO BATAGELJ GUSTAVO YANNARELLI NORMA ALEJANDRA CHASSEING 《Oncology Research》 SCIE 2023年第3期361-374,共14页
Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cel... Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cells(MSCs)are critical for BM/bone homeostasis,and failures in their functionality,transform the BM into a premetastatic niche(PMN).We previously found that BM-MSCs from advanced breast cancer patients(BCPs,infiltrative ductal carcinoma,stage III-B)have an abnormal profile.This work aims to study some of the metabolic and molecular mechanisms underlying MSCs shift from a normal to an abnormal profile in this group of patients.A comparative analysis was undertaken,which included self-renewal capacity,morphology,proliferation capacity,cell cycle,reactive oxygen species(ROS)levels,and senescence-associatedβ‑galactosidase(SA‑β‑gal)staining of BMderived MSCs isolated from 14 BCPs and 9 healthy volunteers(HVs).Additionally,the expression and activity of the telomerase subunit TERT,as well as telomere length,were measured.Expression levels of pluripotency,osteogenic,and osteoclastogenic genes(OCT-4,SOX-2,M-CAM,RUNX-2,BMP-2,CCL-2,M-CSF,and IL-6)were also determined.The results showed that MSCs from BCPs had reduced,self-renewal and proliferation capacity.These cells also exhibited inhibited cell cycle progression and phenotypic changes,such as an enlarged and flattened appearance.Additionally,there was an increase in ROS and senescence levels and a decrease in the functional capacity of TERT to preserve telomere length.We also found an increase in pro-inflammatory/pro-osteoclastogenic gene expression and a decrease in pluripotency gene expression.We conclude that these changes could be responsible for the abnormal functional profile that MSCs show in this group of patients. 展开更多
关键词 Mesenchymal stem/stromal cells Senescence Breast cancer bone marrow Pre-metastatic niche bone metastasis
下载PDF
Constitutive aryl hydrocarbon receptor facilitates the regenerative potential of mouse bone marrow mesenchymal stromal cells
7
作者 Jing Huang Yi-Ning Wang Yi Zhou 《World Journal of Stem Cells》 SCIE 2023年第8期807-820,共14页
BACKGROUND Bone marrow mesenchymal stromal cells(BMSCs)are the commonly used seed cells in tissue engineering.Aryl hydrocarbon receptor(AhR)is a transcription factor involved in various cellular processes.However,the ... BACKGROUND Bone marrow mesenchymal stromal cells(BMSCs)are the commonly used seed cells in tissue engineering.Aryl hydrocarbon receptor(AhR)is a transcription factor involved in various cellular processes.However,the function of constitutive AhR in BMSCs remains unclear.AIM To investigate the role of AhR in the osteogenic and macrophage-modulating potential of mouse BMSCs(mBMSCs)and the underlying mechanism.METHODS Immunochemistry and immunofluorescent staining were used to observe the expression of AhR in mouse bone marrow tissue and mBMSCs.The overexpression or knockdown of AhR was achieved by lentivirus-mediated plasmid.The osteogenic potential was observed by alkaline phosphatase and alizarin red staining.The mRNA and protein levels of osteogenic markers were detected by quantitative polymerase chain reaction(qPCR)and western blot.After coculture with different mBMSCs,the cluster of differentiation(CD)86 and CD206 expressions levels in RAW 264.7 cells were analyzed by flow cytometry.To explore the underlying molecular mechanism,the interaction of AhR with signal transducer and activator of transcription 3(STAT3)was observed by co-immunoprecipitation and phosphorylation of STAT3 was detected by western blot.RESULTS AhR expressions in mouse bone marrow tissue and isolated mBMSCs were detected.AhR overexpression enhanced the osteogenic potential of mBMSCs while AhR knockdown suppressed it.The ratio of CD86+RAW 264.7 cells cocultured with AhR-overexpressed mBMSCs was reduced and that of CD206+cells was increased.AhR directly interacted with STAT3.AhR overexpression increased the phosphorylation of STAT3.After inhibition of STAT3 via stattic,the promotive effects of AhR overexpression on the osteogenic differentiation and macrophage-modulating were partially counteracted.CONCLUSION AhR plays a beneficial role in the regenerative potential of mBMSCs partially by increasing phosphorylation of STAT3. 展开更多
关键词 Aryl hydrocarbon receptor bone marrow mesenchymal stromal cells OSTEOGENESIS MACROPHAGE Signal transducer and activator of transcription 3 Interaction
下载PDF
Is mandible derived mesenchymal stromal cells superior in proliferation and regeneration to long bone-derived mesenchymal stromal cells?
8
作者 Madhan Jeyaraman Tushar Verma +3 位作者 Naveen Jeyaraman Bishnu Prasad Patro Arulkumar Nallakumarasamy Manish Khanna 《World Journal of Methodology》 2023年第2期10-17,共8页
Mesenchymal stromal cells(MSCs)are cells with the characteristic ability of self-renewal along with the ability to exhibit multilineage differentiation.Bone marrow(BM)is the first tissue in which MSCs were identified ... Mesenchymal stromal cells(MSCs)are cells with the characteristic ability of self-renewal along with the ability to exhibit multilineage differentiation.Bone marrow(BM)is the first tissue in which MSCs were identified and BM-MSCs are most commonly used among various MSCs in clinical settings.MSCs can stimulate and promote osseous regeneration.Due to the difference in the development of long bones and craniofacial bones,the mandibular-derived MSCs(M-MSCs)have distinct differentiation characteristics as compared to that of long bones.Both mandibular and long bone-derived MSCs are positive for MSC-associated markers such as CD-73,-105,and-106,stage-specific embryonic antigen 4 and Octamer-4,and negative for hematopoietic markers such as CD-14. 展开更多
关键词 MANDIBLE Long bone Mesenchymal stromal cells Osteogenic potential REGENERATION
下载PDF
Bone marrow-derived mesenchymal stem cells ameliorate sodium nitrite-induced hypoxic brain injury in a rat model 被引量:10
9
作者 Elham H.A.Ali Omar A.Ahmed-Farid Amany A.E.Osman 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第12期1990-1999,共10页
Sodium nitrite(Na NO2) is an inorganic salt used broadly in chemical industry. Na NO2 is highly reactive with hemoglobin causing hypoxia. Mesenchymal stem cells(MSCs) are capable of differentiating into a variety ... Sodium nitrite(Na NO2) is an inorganic salt used broadly in chemical industry. Na NO2 is highly reactive with hemoglobin causing hypoxia. Mesenchymal stem cells(MSCs) are capable of differentiating into a variety of tissue specific cells and MSC therapy is a potential method for improving brain functions. This work aims to investigate the possible therapeutic role of bone marrow-derived MSCs against Na NO2 induced hypoxic brain injury. Rats were divided into control group(treated for 3 or 6 weeks), hypoxic(HP) group(subcutaneous injection of 35 mg/kg Na NO2 for 3 weeks to induce hypoxic brain injury), HP recovery groups N-2 w R and N-3 w R(treated with the same dose of Na NO2 for 2 and 3 weeks respectively, followed by 4-week or 3-week self-recovery respectively), and MSCs treated groups N-2 w SC and N-3 w SC(treated with the same dose of Na NO2 for 2 and 3 weeks respectively, followed by one injection of 2 × 106 MSCs via the tail vein in combination with 4 week self-recovery or intravenous injection of Na NO2 for 1 week in combination with 3 week self-recovery). The levels of neurotransmitters(norepinephrine, dopamine, serotonin), energy substances(adenosine monophosphate, adenosine diphosphate, adenosine triphosphate), and oxidative stress markers(malondialdehyde, nitric oxide, 8-hydroxy-2′-deoxyguanosine, glutathione reduced form, and oxidized glutathione) in the frontal cortex and midbrain were measured using high performance liquid chromatography. At the same time, hematoxylin-eosin staining was performed to observe the pathological change of the injured brain tissue. Compared with HP group, pathological change of brain tissue was milder, the levels of malondialdehyde, nitric oxide, oxidized glutathione, 8-hydroxy-2′-deoxyguanosine, norepinephrine, serotonin, glutathione reduced form, and adenosine triphosphate in the frontal cortex and midbrain were significantly decreased, and glutathione reduced form/oxidized glutathione and adenosine monophosphate/adenosine triphosphate ratio were significantly increased in the MSCs treated groups. These findings suggest that bone marrow-derived MSCs exhibit neuroprotective effects against Na NO2-induced hypoxic brain injury through exerting anti-oxidative effects and providing energy to the brain. 展开更多
关键词 nerve regeneration HYPOXIA bone marrow-derived mesenchymal stem cells sodium nitrite monoamine neurotransmitter cell energy neural regeneration
下载PDF
The active principle region of Buyang Huanwu decoction induced differentiation of bone marrow-derived mesenchymal stem cells into neural-like cells Superior effects over original formula of Buyang Huanwu decoction 被引量:9
10
作者 Jinghui Zheng Yi Wan +4 位作者 Jianhuai Chi Dekai Shen Tingting Wu Weimin Li Pengcheng Du 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第4期261-267,共7页
The present study induced in vitro-cultured passage 4 bone marrow-derived mesenchymal stem cells to differentiate into neural-like cells with a mixture of alkaloid, polysaccharide, aglycone, glycoside, essential oils,... The present study induced in vitro-cultured passage 4 bone marrow-derived mesenchymal stem cells to differentiate into neural-like cells with a mixture of alkaloid, polysaccharide, aglycone, glycoside, essential oils, and effective components of Buyang Huanwu decoction (active principle region of decoction for invigorating yang for recuperation). After 28 days, nestin and neuron-specific enolase were expressed in the cytoplasm. Reverse transcription-PCR and western blot analyses showed that nestin and neuron-specific enolase mRNA and protein expression was greater in the active principle region group compared with the original formula group. Results demonstrated that the active principle region of Buyang Huanwu decoction induced greater differentiation of rat bone marrow-derived mesenchymal stem cells into neural-like cells in vitro than the original Buyang Huanwu decoction formula. 展开更多
关键词 active principle region bone marrow-derived mesenchymal stem cells Buyang Huanwu decoction differentiation nerve cells
下载PDF
MicroRNA changes of bone marrow-derived mesenchymal stem cells differentiated into neuronal-like cells by Schwann cell-conditioned medium 被引量:11
11
作者 Zhi-Jian Wei Bao-You Fan +9 位作者 Yang Liu Han Ding Hao-Shuai Tang Da-Yu Pan Jia-Xiao Shi Peng-Yuan Zheng Hong-Yu Shi Heng Wu Ang Li Shi-Qing Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第8期1462-1469,共8页
Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and ident... Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and identified differentially expressed microRNAs in bone marrow- derived mesenchymal stem cells induced by Schwann cell-conditioned medium, and explored targets and related pathways involved in their differentiation into neuronal-like cells. Primary bone marrow-derived mesenchymal stem cells were isolated from femoral and tibial bones, while primary Schwann cells were isolated from bilateral saphenous nerves. Bone marrow-derived mesenchymal stem cells were cultured in unconditioned (control group) and Schwann cell-conditioned medium (bone marrow-derived mesenchymal stem cell + Schwann cell group). Neuronal differentiation of bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium was observed by time-lapse imaging. Upon induction, the morphology of bone marrow-derived mesencaymal stem cells changed into a neural shape with neurites. Results of quantitative reverse transcription-polymerase chain reaction revealed that nestin mRNA expression was upregulated from 1 to 3 days and downregulated from 3 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. Compared with the control group, microtubule-associated protein 2 mRNA expression gradually increased from 1 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. After 7 days of induction, microRNA analysis iden:ified 83 significantly differentially expressed microRNAs between the two groups. Gene Ontology analysis indicated enrichment of microRNA target genes for neuronal projection development, regulation of axonogenesis, and positive regulation of cell proliferation. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that Hippo, Wnt, transforming growth factor-beta, and Hedgehog signaling pathv/ays were potentially associated with neural differentiation of bone marrow-derived mesenchymal stem cells. This study, which carried out successful microRNA analysis of neuronal-like cells differentiated from bone marrow-derived mesenchymal stem cells by Schwann cell induction, revealed key microRNAs and pathways involved in neural differentiation of bone marrow-derived mesenchymal stem cells. All protocols were approved by the Animal Ethics Committee of Institute of Radiation Medicine, Chinese Academy of Medical Sciences on March 12, 2017 (approval number: DWLI-20170311). 展开更多
关键词 nerve REGENERATION microRNA analysis bone marrow-derived mesenchymal stem cells: Schwann cells neuronal-like cells neuronal differentiation Gene Ontology analysis Hippo SIGNALING PATHWAY Wnt SIGNALING PATHWAY transforming growth factor-beta SIGNALING PATHWAY Hedgehog SIGNALING PATHWAY neural REGENERATION
下载PDF
Effects of lateral ventricular transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene on cognition in a rat model of Alzheimer's disease 被引量:8
12
作者 Ping Zhang Gangyong Zhao +1 位作者 Xianjiang Kang Likai Su 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第4期245-250,共6页
In the present study, transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene into the lateral ventricle of a rat model of Alzheimer's disease, resulted in s... In the present study, transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene into the lateral ventricle of a rat model of Alzheimer's disease, resulted in significant attenuation of nerve cell damage in the hippocampal CA1 region. Furthermore, brain-derived neurotrophic factor and tyrosine kinase B mRNA and protein levels were significantly increased, and learning and memory were significantly improved. Results indicate that transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene can significantly improve cognitive function in a rat model of Alzheimer's disease, possibly by increasing the levels of brain-derived neurotrophic factor and tyrosine kinase B in the hippocampus. 展开更多
关键词 Alzheimer's disease bone marrow-derived mesenchymal stem cells brain-derived neurotrophic factor lateral ventricle electrotransfection neural regeneration
下载PDF
Fusion of bone marrow-derived cells with cancer cells: metastasis as a secondary disease in cancer 被引量:3
13
作者 John M.Pawelek 《Chinese Journal of Cancer》 SCIE CAS CSCD 2014年第3期133-139,共7页
This perspective article highlights the leukocyte-cancer cell hybrid theory as a mechanism for cancer metastasis. Beginning from the first proposal of the theory more than a century ago and continuing today with the f... This perspective article highlights the leukocyte-cancer cell hybrid theory as a mechanism for cancer metastasis. Beginning from the first proposal of the theory more than a century ago and continuing today with the first proof for this theory in a human cancer, the hybrid theory offers a unifying explanation for metastasis. In this scenario, leukocyte fusion with a cancer cell is a secondary disease superimposed upon the early tumor, giving birth to a new, malignant cell with a leukocyte-cancer cell hybrid epigenome. 展开更多
关键词 bone marrow-derived cell-cancer cell hybrids METASTASIS cell FUSION
下载PDF
Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury 被引量:4
14
作者 Jindou Jiang Xingyao Bu +1 位作者 Meng Liu Peixun Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第1期46-53,共8页
Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes a... Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury. 展开更多
关键词 ANGIOGENESIS NEUROGENESIS neurotrophic factors bone marrow-derived mesenchymal stem cells traumatic brain injury stem cell transplantation neural regeneration
下载PDF
Magnet-targeted delivery of bone marrow-derived mesenchymal stem cells improves therapeutic efficacy following hypoxic-ischemic brain injury 被引量:4
15
作者 Chuang Sun Ao-Dan Zhang +2 位作者 Hong-Hai Chen Jie Bian Zheng-Juan Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第11期2324-2329,共6页
hypoxicischemic brain injury;however,the therapeutic efficacy of bone marrow-derived mesenchymal stem cells largely depends on the number of cells that are successfully transferred to the target.Magnet-targeted drug d... hypoxicischemic brain injury;however,the therapeutic efficacy of bone marrow-derived mesenchymal stem cells largely depends on the number of cells that are successfully transferred to the target.Magnet-targeted drug delivery systems can use a specific magnetic field to attract the drug to the target site,increasing the drug concentration.In this study,we found that the double-labeling using superparamagnetic iron oxide nanoparticle and poly-L-lysine(SPIO-PLL)of bone marrow-derived mesenchymal stem cells had no effect on cell survival but decreased cell proliferation 48 hours after labeling.Rat models of hypoxic-ischemic brain injury were established by ligating the left common carotid artery.One day after modeling,intraventricular and caudal vein injections of 1×105 SPIO-PLL-labeled bone marrow-derived mesenchymal stem cells were performed.Twenty-four hours after the intraventricular injection,magnets were fixed to the left side of the rats’heads for 2 hours.Intravoxel incoherent motion magnetic resonance imaging revealed that the perfusion fraction and the diffusion coefficient of rat brain tissue were significantly increased in rats treated with SPIO-PLL-labeled cells through intraventricular injection combined with magnetic guidance,compared with those treated with SPIO-PLL-labeled cells through intraventricular or tail vein injections without magnetic guidance.Hematoxylin-eosin and terminal deoxynucleotidyl transferase dUTP nick-end labeling(TUNEL)staining revealed that in rats treated with SPIO-PLL-labeled cells through intraventricular injection under magnetic guidance,cerebral edema was alleviated,and apoptosis was decreased.These findings suggest that targeted magnetic guidance can be used to improve the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation for hypoxic-ischemic brain injury.This study was approved by the Animal Care and Use Committee of The Second Hospital of Dalian Medical University,China(approval No.2016-060)on March 2,2016. 展开更多
关键词 bone marrow-derived mesenchymal stem cells cell apoptosis diffusion coefficient cell labeling intraventricular injection intravoxel incoherent motion magnetic guidance perfusion fraction superparamagnetic nanoparticles
下载PDF
The role of bone marrow-derived cells in the origin of liver cancer revealed by single-cell sequencing 被引量:4
16
作者 Lu Chen Xianfu Yi +10 位作者 Piao Guo Hua Guo Ziye Chen Chunyu Hou Lisha Qi Yongrong Wang Chengwen Li Peng Liu Yucun Liu Yuanfu Xu Ning Zhang 《Cancer Biology & Medicine》 SCIE CAS CSCD 2020年第1期142-153,共12页
Objective:Epithelial cancers often originate from progenitor cells,while the origin of hepatocellular carcinoma(HCC)is still controversial.HCC,one of the deadliest cancers,is closely linked with liver injuries and chr... Objective:Epithelial cancers often originate from progenitor cells,while the origin of hepatocellular carcinoma(HCC)is still controversial.HCC,one of the deadliest cancers,is closely linked with liver injuries and chronic inflammation,which trigger massive infiltration of bone marrow-derived cells(BMDCs)during liver repair.Methods:To address the possible roles of BMDCs in HCC origination,we established a diethylnitrosamine(DEN)-induced HCC model in bone marrow transplanted mice.Immunohistochemistry and frozen tissue immunofluorescence were used to verify DENinduced HCC in the pathology of the disease.The cellular origin of DEN-induced HCC was further studied by single cell sequencing,single-cell nested PCR,and immunofluorescence-fluorescence in situ hybridization.Results:Studies by using single cell sequencing and biochemical analysis revealed that HCC cells in these mice were coming from donor mice BMDCs,and not from recipient mice.Furthermore,the copy numbers of mouse orthologs of several HCC-related genes previously reported in human HCC were also altered in our mouse model.DEN-induced HCCs exhibited a similar histological phenotype and genomic profile as human HCCs.Conclusions:These results suggested that BMDCs are an important origin of HCC,which provide important clues to HCC prevention,detection,and treatments. 展开更多
关键词 Hepatocellular carcinoma bone marrow-derived cells(BMDCs) ORIGINATION genome sequencing copy number alteration
下载PDF
Cell viability and dopamine secretion of 6-hydroxydopamine-treated PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells 被引量:3
17
作者 Yue Tang Yongchun Cui +6 位作者 Fuliang Luo Xiaopeng Liu Xiaojuan Wang Aili Wu Junwei Zhao Zhong Tian Like Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第14期1101-1105,共5页
In the present study, PC12 cells induced by 6-hydroxydopamine as a model of Parkinson's Disease, were used to investigate the protective effects of bone marrow-derived mesenchymal stem cells bone marrow-derived mesen... In the present study, PC12 cells induced by 6-hydroxydopamine as a model of Parkinson's Disease, were used to investigate the protective effects of bone marrow-derived mesenchymal stem cells bone marrow-derived mesenchymal stem cells against 6-hydroxydopamine-induced neurotoxicity and to verify whether the mechanism of action relates to abnormal a-synuclein accumulation in cells Results showed that co-culture with bone marrow-derived mesenchymal stem cells enhanced PC12 cell viability and dopamine secretion in a cell dose-dependent manner. MitoLight staining was used to confirm that PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells demonstrate reduced levels of cell apoptosis. Immunocytochemistry and western blot analysis found the quantity of α-synuclein accumulation was significantly reduced in PC12 cell and bone marrow-derived mesenchymal stem cell co-cultures. These results indicate that bone marrow-derived mesenchymal stem cells can attenuate 6-hydroxydopamine-induced cytotoxicity by reducing abnormal α-synuclein accumulation in PC12 cells. 展开更多
关键词 bone marrow-derived mesenchymal stem cells Α-SYNUCLEIN 6-HYDROXYDOPAMINE PC12 cells dopamine cell apoptosis NEUROTOXICITY neural regeneration
下载PDF
Neuronal-like differentiation of bone marrow-derived mesenchymal stem cells induced by striatal extracts from a rat model of Parkinson's disease 被引量:3
18
作者 Xiaoling Qin Wang Han Zhigang Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第34期2673-2680,共8页
A rat model of Parkinson's disease was established by 6-hydroxydopamine injection into the medial forebrain bundle. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the femur and tibia, and wer... A rat model of Parkinson's disease was established by 6-hydroxydopamine injection into the medial forebrain bundle. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the femur and tibia, and were co-cultured with 10% and 60% lesioned or intact striatal extracts. The results showed that when exposed to lesioned striatal extracts, BMSCs developed bipolar or multi-polar morphologies, and there was an increase in the percentage of cells that expressed glial fibrillary acidic protein (GFAP), nestin and neuron-specific enolase (NSE). Moreover, the percentage of NSE-positive cells increased with increasing concentrations of lesioned striatal extracts. However, intact striatal extracts only increased the percentage of GFAP-positive cells. The findings suggest that striatal extracts from Parkinson's disease rats induce BMSCs to differentiate into neuronal-like cells in vitro. 展开更多
关键词 bone marrow-derived mesenchymal stem cell Parkinson's disease striatal extract induceddifferentiation nerve cell glial fibrillary acidic protein NESTIN neuron-specific enolase neural stemcell regeneration neural regeneration
下载PDF
Ultra-early treatment of bone marrow-derived mesenchymal stem cells for focal cerebral ischemia/ reperfusion injury 被引量:2
19
作者 Hongjie Fan Weidong Yu +2 位作者 Zongli Wang Qian Wang Zhiyi He 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第17期1296-1302,共7页
The time point at which bone marrow-derived mesenchymal stem cells(BMSCs)can be used in transplantation for the treatment of ischemic brain injury remains unclear.In the present study,BMSCs were transplanted to the ... The time point at which bone marrow-derived mesenchymal stem cells(BMSCs)can be used in transplantation for the treatment of ischemic brain injury remains unclear.In the present study,BMSCs were transplanted to the ischemic site 90 minutes post-ischemia.The results demonstrated that the transplanted BMSCs improved neurological function,reduced infarct volume,increased survivin expression,decreased caspase-3 expression and reduced apoptosis.This suggests that BMSCs transplanted at an ultra-early stage ameliorated brain ischemia by increasing survivin expression,decreasing caspase-3 expression and reducing apoptosis at the ischemia/reperfusion injury site. 展开更多
关键词 bone marrow-derived mesenchymal stem cells cerebral ischemia/reperfusion SURVIVIN CASPASE-3 cell apoptosis brain injury neural regeneration
下载PDF
Distribution and differentiation of bone marrow-derived mesenchymal stem cells in vivo after intraperitoneal and tail vein injection into rats in the recovery phase of stroke: Which path is better? 被引量:2
20
作者 Yan Liu Yingdong Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第13期965-969,共5页
BACKGROUND: Stereotactic injection (striatum or lateral ventricle) and vascular injection ( tail vein or carotid artery) are now often used in cellular therapy for cerebral infarction. Stereotactic injection can ... BACKGROUND: Stereotactic injection (striatum or lateral ventricle) and vascular injection ( tail vein or carotid artery) are now often used in cellular therapy for cerebral infarction. Stereotactic injection can accurately deliver cells to the infarct area, but requires a stereotactic device and causes secondary trauma; vascular injection is easy and better for host neurological deficit recovery, but can cause thrombosis. OBJECTIVE: To compare the therapeutic potential of adult bone marrow-derived mesenchymal stem cells (BMSCs) transplantation by intraperitoneal versus intravenous administration to cerebral ischemic rats. DESIGN, TIME AND SE'B'ING: A randomized controlled animal experiment was performed at the Cell Room and Pathology Laboratory, Brain Hospital Affiliated to Nanjing Medical University from November 2007 to September 2008. MATERIALS: BMSCs were derived from 20 healthy Sprague-Dawley rats aged 4-6 weeks. METHODS: Forty-five adult middle cerebral artery occlusion (MCAO) rats were randomly divided into control, intravenous and intraperitoneal injection groups, with 15 rats in each group. At 21 days after modeling, rats in the control group received 1 mL of 0.01 mol/L phosphate buffered saline via tail vein injection and each experimental rat received 4 x 106 BMSCs labeled by bromodeoxyuridine (BrdU) via intravenous or intraperitoneal injection. MAIN OUTCOME MEASURES: Angiogenin expression and survival of transplanted cells were measured by immunohistochemical staining of brain tissue in infarction hemisphere at 7, 14 or 21 days after BMSC transplantation. Co-expression of BrdU/microtubule-associated protein 2 or BrdU/glial fibrillary acidic protein was observed by double-labeled immunofluorescence of cerebral cortex. Evaluation of nerve function adhesion-removal test was performed on the 14 or 21 days after BMSCs treatment. using the neurological injury severity score and the 1st and 21st day before and after MCAO, and at 3, 7 RESULTS: Angiogenin-positive new vessels were distributed in the bilateral striatum, hippocampus and cerebral cortex of each group of rats at each time point, most markedly in the intravenous injection group. There were significantly more BrdU-positive cells in the intravenous injection group than in the intraperitoneal injection group (P 〈 0.01). Co-expression of BrdU/ microtubule-associated protein 2 or BrdU/glial fibrillary acidic protein were almost only seen in the intravenous group by fluorescence microscopy. After transplantation, BMSCs significantly restored nerve function in rats, particularly in the intravenous injection group. CONCLUSION: BMSCs were able to enter brain tissue via the tail vein or peritoneal injection and improve neurological function by promoting the regeneration of nerves and blood vessels in vivo, more effectively after intravenous than intraperitoneal injection. 展开更多
关键词 bone marrow-derived mesenchymal stem cells brain ischemia functional recovery neural differentiation ANGIOGENESIS neural regeneration
下载PDF
上一页 1 2 102 下一页 到第
使用帮助 返回顶部