BACKGROUND Although percutaneous vertebral augmentation(PVA)is a commonly used procedure for treating vertebral compression fracture(VCF),the risk of vertebral refracture should be considered.Chronic kidney disease-mi...BACKGROUND Although percutaneous vertebral augmentation(PVA)is a commonly used procedure for treating vertebral compression fracture(VCF),the risk of vertebral refracture should be considered.Chronic kidney disease-mineral and bone disorder(CKD-MBD)is a systemic disease of mineral and bone metabolism.It is associated with an increased risk of fracture.Few studies have reported the use of PVA in patients with CKD-MBD.We herein report a rare case wherein the cemented vertebra and the adjacent vertebra refractured simultaneously in a CKD-MBD patient after PVA.CASE SUMMARY A 74-year-old man suffered from low back pain after taking a fall about 3 wk ago.According to physical examination,imaging and laboratory findings,diagnoses of T12 VCF,CKD-MBD,and chronic kidney disease stage 5 were established.He then received percutaneous vertebroplasty at T12 vertebra.Fourteen weeks later,he presented with T12 and L1 vertebral refractures caused by lumbar sprain.Once again,he was given PVA which was optimized for the refractured vertebrae.Although the short-term postoperative effect was satisfactory,he reported chronic low back pain again at the 3-month follow-up.CONCLUSION It is necessary that patients with CKD-MBD who have received PVA are aware of the adverse effects of CKD-MBD.It may increase the risk of vertebral refracture.Furthermore,the PVA surgical technique needs to be optimized according to the condition of the patient.The medium-and long-term effects of PVA remain uncertain in patients with CKD-MBD.展开更多
Objective: To investigate the effectiveness of the plate screw internal fixation technique on the clinical outcomes of patients with traumatic fractures of long bones in the lower extremities. Methods: From January 20...Objective: To investigate the effectiveness of the plate screw internal fixation technique on the clinical outcomes of patients with traumatic fractures of long bones in the lower extremities. Methods: From January 2022 to December 2023, 70 patients with traumatic fractures of long bones in the lower extremities were admitted to the hospital and randomly divided into two groups: the control group and the observation group, each consisting of 35 cases. The control group underwent traditional closed interlocking intramedullary nailing, while the observation group received internal fixation with steel plates and screws. Relevant surgical indicators, treatment effectiveness, and postoperative complication rates were compared between the two groups. Results: The observation group exhibited significantly short surgical duration (80.65 ± 5.01 vs. 88.36 ± 5.26 minutes), fracture healing time (13.27 ± 0.32 vs. 15.52 ± 0.48 weeks), and hospitalization days (10.49 ± 1.13 vs. 16.57 ± 1.15 days) compared to the control group (P = 0.000). The effective treatment rate was significantly higher in the observation group (29/82.86%) than in the control group (21/60.00%), with a significant difference observed (χ2 = 4.480, P = 0.034). Additionally, the complication rate in the observation group (2/5.71%) was significantly lower than that in the control group (8/22.86%), with a correlated difference (χ2 = 4.200, P = 0.040). Conclusion: The plate screw internal fixation technique demonstrates significant clinical efficacy in treating traumatic fractures of long bones in the lower extremities. It improves the healing rate, reduces complications, and represents a safe and effective treatment strategy worthy of widespread use and application.展开更多
The clinical application of magnesium(Mg)and its alloys for bone fractures has been well supported by in vitro and in vivo trials.However,there were studies indicating negative effects of high dose Mg intake and susta...The clinical application of magnesium(Mg)and its alloys for bone fractures has been well supported by in vitro and in vivo trials.However,there were studies indicating negative effects of high dose Mg intake and sustained local release of Mg ions on bone metabolism or repair,which should not be ignored when developing Mg-based implants.Thus,it remains necessary to assess the biological effects of Mg implants in animal models relevant to clinical treatment modalities.The primary purpose of this study was to validate the beneficial effects of intramedullary Mg implants on the healing outcome of femoral fractures in a modified rat model.In addition,the mineralization parameters at multiple anatomical sites were evaluated,to investigate their association with healing outcome and potential clinical applications.Compared to the control group without Mg implantation,postoperative imaging at week 12 demonstrated better healing outcomes in the Mg group,with more stable unions in 3D analysis and high-mineralized bridging in 2D evaluation.The bone tissue mineral density(TMD)was higher in the Mg group at the non-operated femur and lumbar vertebra,while no differences between groups were identified regarding the bone tissue volume(TV),TMD and bone mineral content(BMC)in humerus.In the surgical femur,the Mg group presented higher TMD,but lower TV and BMC in the distal metaphyseal region,as well as reduced BMC at the osteotomy site.Principal component analysis(PCA)-based machine learning revealed that by selecting clinically relevant parameters,radiological markers could be constructed for differentiation of healing outcomes,with better performance than 2D scoring.The study provides insights and preclinical evidence for the rational investigation of bioactive materials,the identification of potential adverse effects,and the promotion of diagnostic capabilities for fracture healing.展开更多
Osteoporosis is a common metabolic skeletal disorder characterized by decreased bone mass and deteriorated bone structure, leading to increased susceptibility to fractures. With aging population, osteoporotic fracture...Osteoporosis is a common metabolic skeletal disorder characterized by decreased bone mass and deteriorated bone structure, leading to increased susceptibility to fractures. With aging population, osteoporotic fractures are of global health and socioeconomic importance. The three-dimensional microstructural information of the common osteoporosis-related fracture sites, including vertebra, femoral neck and distal radius, is a key for fully understanding osteoporosis pathogenesis and predicting the fracture risk. Low vertebral bone mineral density(BMD) is correlated with increased fracture of the spine. Vertebral BMD decreases from cervical to lumbar spine, with the lowest BMD at the third lumbar vertebra. Trabecular bone mass of the vertebrae is much lower than that of the peripheral bone. Cancellous bone of the vertebral body has a complex heterogeneous three-dimensional microstructure, with lower bone volume in the central and anterior superior regions. Trabecular bone quality is a key element to maintain the vertebral strength. The increased fragility of osteoporotic femoral neck is attributed to low cancellous bone volume and high compact porosity. Compared with age-matched controls, increased cortical porosity is observed at the femoral neck in osteoporoticfracture patients. Distal radius demonstrates spatial inhomogeneous characteristic in cortical microstructure. The medial region of the distal radius displays the highest cortical porosity compared with the lateral, anterior and posterior regions. Bone strength of the distal radius is mainly determined by cortical porosity, which deteriorates with advancing age.展开更多
Lower limb injures are frequently observed in passenger car traffic accidents.Previous studies of the injuries focus on long bone fractures by using either cadaver component tests or simulations of the long bone kinem...Lower limb injures are frequently observed in passenger car traffic accidents.Previous studies of the injuries focus on long bone fractures by using either cadaver component tests or simulations of the long bone kinematics,which lack in-depth study on the fractures in stress analysis.This paper aims to investigate lower limb impact biomechanics in real-world car to pedestrian accidents and to predict fractures of long bones in term of stress parameter for femur,tibia,and fibula.For the above purposes,a 3D finite element(FE) model of human body lower limb(HBM-LL) is developed based on human anatomy.The model consists of the pelvis,femur,tibia,fibula,patella,foot bones,primary tendons,knee joint capsule,meniscus,and ligaments.The FE model is validated by comparing the results from a lateral impact between simulations and tests with cadaver lower limb specimens.Two real-world accidents are selected from an in-depth accident database with detailed information about the accident scene,car impact speed,damage to the car,and pedestrian injuries.Multi-body system(MBS) models are used to reconstruct the kinematics of the pedestrians in the two accidents and the impact conditions are calculated for initial impact velocity and orientations of the car and pedestrian during the collision.The FE model is used to perform injury reconstructions and predict the fractures by using physical parameters,such as von Mises stress of long bones.The calculated failure level of the long bones is correlated with the injury outcomes observed from the two accident cases.The reconstruction result shows that the HBM-LL FE model has acceptable biofidelity and can be applied to predict the risk of long bone fractures.This study provides an efficient methodology to investigate the long bone fracture suffered from vehicle traffic collisions.展开更多
To enhance the fusion of graft bone in thoracolumbar vertebrae and minimize the postoperative loss of correction, short-segment pedicle screw fixation was reinforced with posterior moselizee bone grafting in vertebrae...To enhance the fusion of graft bone in thoracolumbar vertebrae and minimize the postoperative loss of correction, short-segment pedicle screw fixation was reinforced with posterior moselizee bone grafting in vertebrae for spinal fusion in patients with thoracrolumbar vertebrate fractures. Seventy patients with thoracrolumbar vertebrate fractures were treated by short-segment pedicle screw fixation and were randomly divided into two groups. Fractures in group A (n=20) were rein-forced with posterior morselized bone grafting in vertebrae for spinal fusion, while patients group B (n=50) did not receive the morselized bone grafting for bone fusion. The two groups were compared in terms of kyphotic deformity, anterior vertebral height, instrument failure and neurological functions after the treatment. Frankel grading system was used for the evaluation of neurological evaluation and Denis scoring scale was employed for pain assessment. The results showed that the kyphosis correction was achieved in both group A and group B (group A: 6.4 degree; group B: 5.4 degree)/At the end of follow-up, kyphosis correction was maintained in group A but lost in group B (P=0.0001). Postoperatively, greater anterior height was achieved in group A than in group B (P〈0.01). During follow-up study, anterior vertebral height was maintained only in Group A (P〈0.001). Both group A and group B showed good Denis pain scores (P1 and P2) but group A outdid group B in terms of control of severe and constant pain (P4 and P5). By Frankel criteria, the changes in neurological functions in group A was better than those of group B (P〈0.001). It is concluded that reinforcement of short-segment pedicle fixation with morselized bone grafting for the treatment of patients with thoracolumbar vertebrae fracture could achieve and maintain kyphosis correction, and it may also increase and maintain anterior vertebral height. Morselized bone grafting in vertebrae offers immediate spinal stability in patients with thoracolumbar vertebrate fractures, decreases the instrument failure and provides better postoperative pain control than without the morselized bone grafting.展开更多
AIM: To evaluate the association between alcoholic liver disease(ALD) and bone fractures or osteoporosis. METHODS: Non-randomized studies were identified from databases(Pub Med, EMBASE, and the Cochrane Library). The ...AIM: To evaluate the association between alcoholic liver disease(ALD) and bone fractures or osteoporosis. METHODS: Non-randomized studies were identified from databases(Pub Med, EMBASE, and the Cochrane Library). The search was conducted using Boolean operators and keywords, which included "alcoholic liver diseases", "osteoporosis", or "bone fractures". The prevalence of any fractures or osteoporosis, and bone mineral density(BMD) were extracted and analyzed using risk ratios and standardized mean difference(SMD). A random effects model was applied. RESULTS: In total, 15 studies were identified and analyzed. Overall, ALD demonstrated a RR of 1.944(95%CI: 1.354-2.791) for the development of bone fractures. However, ALD showed a RR of 0.849(95%CI: 0.523-1.380) for the development of osteoporosis. BMD was not significantly different between the ALD and control groups, although there was a trend toward lower BMD in patients with ALD(SMD in femur-BMD:-0.172, 95%CI:-0.453-0.110; SMD in spine-BMD:-0.169, 95%CI:-0.476-0.138). Sensitivity analyses showed consistent results. CONCLUSION: Current publications indicate significant associations between bone fractures and ALD, independent of BMD or the presence of osteoporosis.展开更多
Bones are organs of the skeletal system, providing shape, mechanical support, and protection to the body and facilitating the movement. In addition, bones contribute to the mineral homeostasis of the body and have rec...Bones are organs of the skeletal system, providing shape, mechanical support, and protection to the body and facilitating the movement. In addition, bones contribute to the mineral homeostasis of the body and have recently been found to participate in endocrine regulation of energy metabolism. The well-known limitations associated with clinical use of autografts and allografts continue to drive efforts to develop bone graft substitutes, using the principles of biomaterials and tissue engineering. Under some stressful and continuous compressive conditions, the ability of the bone tissue to tolerate strength decreases. Whenever these forces overcome the toleration of the bone tissue, bone fracture occurs. years展开更多
Biliary atresia(BA) is one of the major hepatobiliary abnormalities in infants and one of the causes of hepatic osteodystrophy.Bone disease may be caused by the malabsorption of calcium and magnesium by vitamin D in h...Biliary atresia(BA) is one of the major hepatobiliary abnormalities in infants and one of the causes of hepatic osteodystrophy.Bone disease may be caused by the malabsorption of calcium and magnesium by vitamin D in hepatobiliary diseases in which bile flow into the intestines is deficient or absent.Bone fracture before Kasai hepatic portoenterostomy or within one month after the procedure in an infant with BA is very rare.We herein report two infants:one infant with BA who initially presented with a bone fracture before Kasai hepatic portoenterostomy,and the other at 4 wk after Kasai hepatic portoenterostomy,and also provide a review of the literature.Moreover,we conclude that clinicians should consider BA in infants with bone fracture during early infancy.展开更多
BACKGROUND: Fascia iliaca compartment nerve block(FICNB) has been an established technique for postoperative analgesia after surgery for femoral bone fracture. FICNB is technically easy, effective for postoperative pa...BACKGROUND: Fascia iliaca compartment nerve block(FICNB) has been an established technique for postoperative analgesia after surgery for femoral bone fracture. FICNB is technically easy, effective for postoperative pain control after operation for femoral bone fracture and decreases the complications induced by systemic analgesic drugs. The severity of postoperative pain is affected by genetics, cultural and social factors across the world. In this study we assessed the efficacy of fascia iliaca compartment nerve block when it is used as part of multimodal analgesia after surgery for femoral bone fracture.METHODS: An institution-based case control study was conducted from September, 2013 to May, 2014. All patients who had been operated on under spinal anesthesia for femoral bone fracture were included. The patients divided into a FICNB group(n=20) and a control group(n=20). The FICNB group was given 30 mL of 0.25% bupivacaine at the end of the operation. Postoperative pain was assessed within the f irst 24 hours, i.e. at 15 minutes, 2 hours, 6 hours, 12 hours and 24 hours using 100 mm visual analogue scale(VAS), total analgesic consumption, and the time for the f irst analgesic request.RESULTS: VAS pain scores were reduced within the f irst 24 hours after operation in the FICNB group compared wtih the control group. VAS scores at 2 hours were taken as median values(IQR) 0.00(0.00) vs.18.00(30.00), P=0.001; at 6 hours 0.00(0.00) vs. 34.00(20.75), P=0.000; at 24 hours 12.50(10.00) vs. 31.50(20.75), P=0.004; and at 12 hours(17.80±12.45) vs.(29.95±12.40), P=0.004, respectively. The total analgesic consumption of diclofenac at 12 and 24 hours was reduced in the FICNB group, and the time for the fi rst analgesic request was signifi cantly prolonged(417.50 vs. 139.25 minutes, P=0.000).CONCLUSIONS: A single injection for FICNB could lead to postoperative pain relief, reduction of total analgesic consumption and prolonged time for the fi rst analgesic request in the FICNB group after surgery for femoral bone fracture. We recommend FICNB for analgesia after surgery for femoral bone fracture and for patients with femoral bone fracture at the emergency department.展开更多
Osteoporosis represents one major health condition for our growing elderly population. It accounts for severe morbidity and increased mortality in postmenopausal women and it is becoming an emerging health concern eve...Osteoporosis represents one major health condition for our growing elderly population. It accounts for severe morbidity and increased mortality in postmenopausal women and it is becoming an emerging health concern even in aging men. Screening of the population at risk for bone degeneration and treatment assessment of osteoporotic patients to prevent bone fragility fractures represent useful tools to improve quality of life in the elderly and to lighten the related socio-economic impact. Bone mineral density(BMD) estimate by means of dual-energy X-ray absorptiometry is normally used in clinical practice for osteoporosis diagnosis. Nevertheless, BMD alone does not represent a good predictor of fracture risk. From a clinical point of view, bone microarchitecture seems to be an intriguing aspect to characterize bone alteration patterns in aging and pathology. The widening into clinical practice of medical imaging techniques and the impressive advances in information technologies together with enhanced capacity of power calculation have promoted proliferation of new methods to assess changes of trabecular bone architecture(TBA) during aging and osteoporosis. Magnetic resonance imaging(MRI) has recently arisen as a useful tool to measure bone structure in vivo. In particular, high-resolution MRI techniques have introduced new perspectives for TBA characterization by non-invasive non-ionizing methods. However, texture analysis methods have not found favor with clinicians as they produce quite a few parameters whose interpretation is difficult. The introduction in biomedical field of paradigms, such as theory of complexity, chaos, and fractals, suggests new approaches and provides innovative tools to develop computerized methods that, by producing a limited number of parameters sensitive to pathology onset and progression, would speed up their application into clinical practice. Complexity of living beings and fractality of several physio-anatomic structures suggest fractal analysis as a promising approach to quantify morphofunctional changes in both aging and pathology. In this particular context, fractal lacunarity seems to be the proper tool to characterize TBA texture as it is able to describe both discontinuity of bone network and sizes of bone marrow spaces, whose changes are an index of bone fracture risk. In this paper, an original method of MRI texture analysis, based on TBA fractal lacunarity is described and discussed in the light of new perspectives for early diagnosis of osteoporotic fractures.展开更多
Objective: To investigate the application of artificial tiger bone powder on fracture healing time, wrist functional recovery and quality of life (QOL) in elderly patients with distal radius fracture. Methods: The stu...Objective: To investigate the application of artificial tiger bone powder on fracture healing time, wrist functional recovery and quality of life (QOL) in elderly patients with distal radius fracture. Methods: The study was a randomised controlled trials performed from January 2015 to December 2016 in a hospital. Elderly patients with distal radius fracture were divided into the treatment and the control groups by the random sealed envelope method. All patients were given splint or plaster fixation after manipulative reduction, and functional exercise, the treatment group was also given artificial tiger bone powder orally (trade name: Jintiange capsule), the control group was given an oral placebo in their appearance and usage identical with the treatment group. Prior to treatment and 6, 12 months after treatment, the wrist function was assessed by range of motion, including flexion-extension, radial-ulnar and pronation-supination, and the QOL was assessed by the Mos 36-item Short Form Health Survey. Each patient's fracture healing time was recorded. Results: Before treatment, there were no significant differences in wrist function and QOL between the two groups. At 6 and 12 months after treatment, the wrist function and QOL in the treatment group were better than those in the control group, the differences were statistically significant (P < 0.05). The fracture healing time in the treatment group was shorter than that of the control group, and the difference was statistically significant (P < 0.05). Conclusion: The early usage of artificial tiger bone powder for elderly patients with distal radius fracture can promote the healing of fracture, recovery of wrist joint function, and ultimately improve the QOL for elderly patients.展开更多
Objective: Analysis of clinical documents such as bone mineral density (BMD) reports is an important component of program evaluation because it can provide insights into the accuracy of assessment of fracture risk com...Objective: Analysis of clinical documents such as bone mineral density (BMD) reports is an important component of program evaluation because it can provide insights into the accuracy of assessment of fracture risk communicated to patients and practitioners. Our objective was to compare fracture risk calculations from BMD test reports to those based on the 2010 Canadian guidelines. Methods: We retrieved BMD reports from fragility fracture patients screened through a community hospital fracture clinic participating in Ontario’s Fracture Clinic Screening Program. Fracture risk was determined according to the 2010 Canadian guidelines using age, sex, and T-score at the femoral neck, in addition to three clinical factors. Three researchers classified patients’ fracture risk until consensus was achieved. Results: We retrieved reports for 17 patients from nine different BMD clinics in the Greater Toronto Area. Each patient had a different primary care physician and all BMD tests were conducted after the 2010 Canadian guidelines were published. The fracture risk of 10 patients was misclassified with 9 of the 10 reports underestimating fracture risk. Nine reports acknowledged that the prevalence of a fragility fracture raised the risk category by one level but only four of these reports acknowledged that the patient had, or may have sustained, a fragility fracture. When we raised fracture risk by one level according to these reports, eight patients were still misclassified. Fracture risk in the majority of these patients remained underestimated. Inconsistent classification was found in the majority of cases where reports came from the same clinic. Four reports described risk levels for two different types of risk. Conclusions: More than half of patients received BMD reports which underestimated fracture risk. Bone health management recommendations based on falsely low fracture risk are likely to be sub-optimal.展开更多
The risk of fracture is increased in both type 1 diabetes mellitus(T1DM)and type 2 diabetes mellitus(T2DM).However,in contrast to the former,patients with T2DM usually possess higher bone mineral density.Thus,there is...The risk of fracture is increased in both type 1 diabetes mellitus(T1DM)and type 2 diabetes mellitus(T2DM).However,in contrast to the former,patients with T2DM usually possess higher bone mineral density.Thus,there is a considerable difference in the pathophysiological basis of poor bone health between the two types of diabetes.Impaired bone strength due to poor bone microarchitecture and low bone turnover along with increased risk of fall are among the major factors behind elevated fracture risk.Moreover,some antidiabetic medications further enhance the fragility of the bone.On the other hand,antiosteoporosis medications can affect the glucose homeostasis in these patients.It is also difficult to predict the fracture risk in these patients because conventional tools such as bone mineral density and Fracture Risk Assessment Tool score assessment can underestimate the risk.Evidence-based recommendations for risk evaluation and management of poor bone health in diabetes are sparse in the literature.With the advancement in imaging technology,newer modalities are available to evaluate the bone quality and risk assessment in patients with diabetes.The purpose of this review is to explore the patho-physiology behind poor bone health in diabetic patients.Approach to the fracture risk evaluation in both T1DM and T2DM as well as the pragmatic use and efficacy of the available treatment options have been discussed in depth.展开更多
A monoclonal antibody raised against bone morphogenetic protein (BMP-McAb) has been used to demonstrate the presence of bone morphogenetic protein(BMP) in experimental fracture healing. Rabbit mandibles were fractured...A monoclonal antibody raised against bone morphogenetic protein (BMP-McAb) has been used to demonstrate the presence of bone morphogenetic protein(BMP) in experimental fracture healing. Rabbit mandibles were fractured using standardized methods and left to heal for 3, 7, 14, 21 and 24 d, respectively. The avidin-biotin complex (ABC) method demonstrated an accumulation of positively stained primitive mesenchymal cells at the fracture site in the hematoma stage of bone repair. These cells appeared to undergo differentiation into positively-stained chondroblasts and osteoblasts during the phase of callus formation. Undifferentiated mesenchymal cells showed a high positive reactivity in the early post-fracture stages but a much lower reactivity during the remodelling phase.The results of our study suggest that bone inductive processes are accompanied by the presence of BMP in osteoprogenitor cells during fracture healing of the mandible and that BMP may play a significant role in osteogenesis during bone healing.展开更多
Fractures of the lateral process of the talus(FLPT)are uncommon fractures that represent a clinical challenge.Traditional radiological classification systems rely predominantly on radiographic findings.However,due to ...Fractures of the lateral process of the talus(FLPT)are uncommon fractures that represent a clinical challenge.Traditional radiological classification systems rely predominantly on radiographic findings.However,due to the high rate of FLPT misdiagnosis and the limited accuracy in evaluating concomitant talar injuries through plain radiographs,novel imaging classification systems have been developed that aim to enhance the diagnosis of concomitant talar injuries,thereby optimizing patient management and reducing the incidence of long-term complications.展开更多
Bone fracture occurs in stroke patients at different times during the recovery phase, prolonging recovery time and increasing medical costs. In this review, we discuss the potential risk factors for post-stroke bone f...Bone fracture occurs in stroke patients at different times during the recovery phase, prolonging recovery time and increasing medical costs. In this review, we discuss the potential risk factors for post-stroke bone fracture and preventive methods. Most post-stroke bone fractures occur in the lower extremities, indicating fragile bones are a risk factor. Motor changes, including posture, mobility, and balance post-stroke contribute to bone loss and thus increase risk of bone fracture. Bone mineral density is a useful indicator for bone resorption, useful to identify patients at risk of post-stroke bone fracture. Calcium supplementation was previously regarded as a useful treatment during physical rehabilitation. However, recent data suggests calcium supplementation has a negative impact on atherosclerotic conditions. Vitamin D intake may prevent osteoporosis and fractures in patients with stroke. Although drugs such as teriparatide show some benefits in preventing osteoporosis, additional clinical trials are needed to determine the most effective conditions for post-stroke applications.展开更多
With the aging population,intertrochanteric femur fracture in the elderly has become one of the most serious public health issues and a hot topic of research in trauma orthopedics.Due to the limitations of internal fi...With the aging population,intertrochanteric femur fracture in the elderly has become one of the most serious public health issues and a hot topic of research in trauma orthopedics.Due to the limitations of internal fixation techniques and the insufficient mechanical design of nails,the occurrence of complications delays patient recovery after surgical treatment.Design of a proximal femur bionic nail(PFBN)based on Zhang’s N triangle theory provides triangular supporting fixation,which dramatically decreases the occurrence of complications and has been widely used for clinical treatment of unstable intertrochanteric femur fracture worldwide.In this work,we developed an equivalent biomechanical model to analyze improvement in bone remodeling of unstable intertrochanteric femur fracture through PFBN use.The results show that compared with proximal femoral nail antirotation(PFNA)and InterTan,PFBN can dramatically decrease the maximum strain in the proximal femur.Based on Frost’s mechanostat theory,the local mechanical environment in the proximal femur can be regulated into the medium overload region by using a PFBN,which may render the proximal femur in a state of physiological overload,favoring post-operative recovery of intertrochanteric femur fracture in the elderly.This work shows that PFBN may constitute a panacea for unstable intertrochanteric femur fracture and provides insights into improving methods of internal fixation.展开更多
BACKGROUND Delayed union,malunion,and nonunion are serious complications in the healing of fractures.Predicting the risk of nonunion before or after surgery is challenging.AIM To compare the most prevalent predictive ...BACKGROUND Delayed union,malunion,and nonunion are serious complications in the healing of fractures.Predicting the risk of nonunion before or after surgery is challenging.AIM To compare the most prevalent predictive scores of nonunion used in clinical practice to determine the most accurate score for predicting nonunion.METHODS We collected data from patients with tibial shaft fractures undergoing surgery from January 2016 to December 2020 in three different trauma hospitals.In this retrospective multicenter study,we considered only fractures treated with intramedullary nailing.We calculated the tibia FRACTure prediction healING days(FRACTING)score,Nonunion Risk Determination score,and Leeds-Genoa Nonunion Index(LEG-NUI)score at the time of definitive fixation.RESULTS Of the 130 patients enrolled,89(68.4%)healed within 9 months and were classified as union.The remaining patients(n=41,31.5%)healed after more than 9 months or underwent other surgical procedures and were classified as nonunion.After calculation of the three scores,LEG-NUI and FRACTING were the most accurate at predicting healing.CONCLUSION LEG-NUI and FRACTING showed the best performances by accurately predicting union and nonunion.展开更多
Purpose: The Investigational Vertebroplasty Efficacy and Safety Trial (INVEST), a randomized blinded controlled study of Vertebroplasty, demonstrated similar improvements in pain between blinded Vertebroplasty and sha...Purpose: The Investigational Vertebroplasty Efficacy and Safety Trial (INVEST), a randomized blinded controlled study of Vertebroplasty, demonstrated similar improvements in pain between blinded Vertebroplasty and sham-Vertebroplasty groups. The result from the RCT study suggested that the observed efficacy of the Vertebroplasty procedure, instead of representing the cement-mediated reduction in pain, may relate to the vertebral bone drilling per se. The aim of this study was to demonstrate the effectiveness of pain relief of vertebral bone drilling at the site of painful osteoporotic vertebral compression fractures in the acute phase. Materials and Methods: Twenty-six patients with painful osteoporotic compression fractures underwent the vertebral bone drilling. We assessed primary outcome measures in the NRS pain score and RDQ score at day 0 and 3 following the drilling. Comparisons were made by using Wilcoxon signed rank test. Results: The mean baseline NRS and RDQ score, and the mean NRS and RDQ score at day 3 were 7.3 ± 1.2, 15.7 ± 4.2, 4.6 ± 1.4, 7.3 ± 2.2, respectively. Among the patients, we detected significant improvements in NRS pain score and RDQ score at day 3 following the drilling compared with day 0 (P < 0.001). Conclusion: Vertebral bone drilling at the site of painful vertebral compression fractures alleviated the intractable pain due to osteoporotic vertebral compression fractures.展开更多
文摘BACKGROUND Although percutaneous vertebral augmentation(PVA)is a commonly used procedure for treating vertebral compression fracture(VCF),the risk of vertebral refracture should be considered.Chronic kidney disease-mineral and bone disorder(CKD-MBD)is a systemic disease of mineral and bone metabolism.It is associated with an increased risk of fracture.Few studies have reported the use of PVA in patients with CKD-MBD.We herein report a rare case wherein the cemented vertebra and the adjacent vertebra refractured simultaneously in a CKD-MBD patient after PVA.CASE SUMMARY A 74-year-old man suffered from low back pain after taking a fall about 3 wk ago.According to physical examination,imaging and laboratory findings,diagnoses of T12 VCF,CKD-MBD,and chronic kidney disease stage 5 were established.He then received percutaneous vertebroplasty at T12 vertebra.Fourteen weeks later,he presented with T12 and L1 vertebral refractures caused by lumbar sprain.Once again,he was given PVA which was optimized for the refractured vertebrae.Although the short-term postoperative effect was satisfactory,he reported chronic low back pain again at the 3-month follow-up.CONCLUSION It is necessary that patients with CKD-MBD who have received PVA are aware of the adverse effects of CKD-MBD.It may increase the risk of vertebral refracture.Furthermore,the PVA surgical technique needs to be optimized according to the condition of the patient.The medium-and long-term effects of PVA remain uncertain in patients with CKD-MBD.
文摘Objective: To investigate the effectiveness of the plate screw internal fixation technique on the clinical outcomes of patients with traumatic fractures of long bones in the lower extremities. Methods: From January 2022 to December 2023, 70 patients with traumatic fractures of long bones in the lower extremities were admitted to the hospital and randomly divided into two groups: the control group and the observation group, each consisting of 35 cases. The control group underwent traditional closed interlocking intramedullary nailing, while the observation group received internal fixation with steel plates and screws. Relevant surgical indicators, treatment effectiveness, and postoperative complication rates were compared between the two groups. Results: The observation group exhibited significantly short surgical duration (80.65 ± 5.01 vs. 88.36 ± 5.26 minutes), fracture healing time (13.27 ± 0.32 vs. 15.52 ± 0.48 weeks), and hospitalization days (10.49 ± 1.13 vs. 16.57 ± 1.15 days) compared to the control group (P = 0.000). The effective treatment rate was significantly higher in the observation group (29/82.86%) than in the control group (21/60.00%), with a significant difference observed (χ2 = 4.480, P = 0.034). Additionally, the complication rate in the observation group (2/5.71%) was significantly lower than that in the control group (8/22.86%), with a correlated difference (χ2 = 4.200, P = 0.040). Conclusion: The plate screw internal fixation technique demonstrates significant clinical efficacy in treating traumatic fractures of long bones in the lower extremities. It improves the healing rate, reduces complications, and represents a safe and effective treatment strategy worthy of widespread use and application.
文摘The clinical application of magnesium(Mg)and its alloys for bone fractures has been well supported by in vitro and in vivo trials.However,there were studies indicating negative effects of high dose Mg intake and sustained local release of Mg ions on bone metabolism or repair,which should not be ignored when developing Mg-based implants.Thus,it remains necessary to assess the biological effects of Mg implants in animal models relevant to clinical treatment modalities.The primary purpose of this study was to validate the beneficial effects of intramedullary Mg implants on the healing outcome of femoral fractures in a modified rat model.In addition,the mineralization parameters at multiple anatomical sites were evaluated,to investigate their association with healing outcome and potential clinical applications.Compared to the control group without Mg implantation,postoperative imaging at week 12 demonstrated better healing outcomes in the Mg group,with more stable unions in 3D analysis and high-mineralized bridging in 2D evaluation.The bone tissue mineral density(TMD)was higher in the Mg group at the non-operated femur and lumbar vertebra,while no differences between groups were identified regarding the bone tissue volume(TV),TMD and bone mineral content(BMC)in humerus.In the surgical femur,the Mg group presented higher TMD,but lower TV and BMC in the distal metaphyseal region,as well as reduced BMC at the osteotomy site.Principal component analysis(PCA)-based machine learning revealed that by selecting clinically relevant parameters,radiological markers could be constructed for differentiation of healing outcomes,with better performance than 2D scoring.The study provides insights and preclinical evidence for the rational investigation of bioactive materials,the identification of potential adverse effects,and the promotion of diagnostic capabilities for fracture healing.
文摘Osteoporosis is a common metabolic skeletal disorder characterized by decreased bone mass and deteriorated bone structure, leading to increased susceptibility to fractures. With aging population, osteoporotic fractures are of global health and socioeconomic importance. The three-dimensional microstructural information of the common osteoporosis-related fracture sites, including vertebra, femoral neck and distal radius, is a key for fully understanding osteoporosis pathogenesis and predicting the fracture risk. Low vertebral bone mineral density(BMD) is correlated with increased fracture of the spine. Vertebral BMD decreases from cervical to lumbar spine, with the lowest BMD at the third lumbar vertebra. Trabecular bone mass of the vertebrae is much lower than that of the peripheral bone. Cancellous bone of the vertebral body has a complex heterogeneous three-dimensional microstructure, with lower bone volume in the central and anterior superior regions. Trabecular bone quality is a key element to maintain the vertebral strength. The increased fragility of osteoporotic femoral neck is attributed to low cancellous bone volume and high compact porosity. Compared with age-matched controls, increased cortical porosity is observed at the femoral neck in osteoporoticfracture patients. Distal radius demonstrates spatial inhomogeneous characteristic in cortical microstructure. The medial region of the distal radius displays the highest cortical porosity compared with the lateral, anterior and posterior regions. Bone strength of the distal radius is mainly determined by cortical porosity, which deteriorates with advancing age.
基金supported by National Hi-tech Research and Development Program of China (863 Program,Grant No. 2006AA110101)"111 Program" of Ministry of Education and State Administration of Foreign Experts Affairs of China (Grant No. 111-2-11)+1 种基金General Motors Research and Development Center (Grant No. RD-209)Project of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Hunan University,China (Grant No. 60870004)
文摘Lower limb injures are frequently observed in passenger car traffic accidents.Previous studies of the injuries focus on long bone fractures by using either cadaver component tests or simulations of the long bone kinematics,which lack in-depth study on the fractures in stress analysis.This paper aims to investigate lower limb impact biomechanics in real-world car to pedestrian accidents and to predict fractures of long bones in term of stress parameter for femur,tibia,and fibula.For the above purposes,a 3D finite element(FE) model of human body lower limb(HBM-LL) is developed based on human anatomy.The model consists of the pelvis,femur,tibia,fibula,patella,foot bones,primary tendons,knee joint capsule,meniscus,and ligaments.The FE model is validated by comparing the results from a lateral impact between simulations and tests with cadaver lower limb specimens.Two real-world accidents are selected from an in-depth accident database with detailed information about the accident scene,car impact speed,damage to the car,and pedestrian injuries.Multi-body system(MBS) models are used to reconstruct the kinematics of the pedestrians in the two accidents and the impact conditions are calculated for initial impact velocity and orientations of the car and pedestrian during the collision.The FE model is used to perform injury reconstructions and predict the fractures by using physical parameters,such as von Mises stress of long bones.The calculated failure level of the long bones is correlated with the injury outcomes observed from the two accident cases.The reconstruction result shows that the HBM-LL FE model has acceptable biofidelity and can be applied to predict the risk of long bone fractures.This study provides an efficient methodology to investigate the long bone fracture suffered from vehicle traffic collisions.
文摘To enhance the fusion of graft bone in thoracolumbar vertebrae and minimize the postoperative loss of correction, short-segment pedicle screw fixation was reinforced with posterior moselizee bone grafting in vertebrae for spinal fusion in patients with thoracrolumbar vertebrate fractures. Seventy patients with thoracrolumbar vertebrate fractures were treated by short-segment pedicle screw fixation and were randomly divided into two groups. Fractures in group A (n=20) were rein-forced with posterior morselized bone grafting in vertebrae for spinal fusion, while patients group B (n=50) did not receive the morselized bone grafting for bone fusion. The two groups were compared in terms of kyphotic deformity, anterior vertebral height, instrument failure and neurological functions after the treatment. Frankel grading system was used for the evaluation of neurological evaluation and Denis scoring scale was employed for pain assessment. The results showed that the kyphosis correction was achieved in both group A and group B (group A: 6.4 degree; group B: 5.4 degree)/At the end of follow-up, kyphosis correction was maintained in group A but lost in group B (P=0.0001). Postoperatively, greater anterior height was achieved in group A than in group B (P〈0.01). During follow-up study, anterior vertebral height was maintained only in Group A (P〈0.001). Both group A and group B showed good Denis pain scores (P1 and P2) but group A outdid group B in terms of control of severe and constant pain (P4 and P5). By Frankel criteria, the changes in neurological functions in group A was better than those of group B (P〈0.001). It is concluded that reinforcement of short-segment pedicle fixation with morselized bone grafting for the treatment of patients with thoracolumbar vertebrae fracture could achieve and maintain kyphosis correction, and it may also increase and maintain anterior vertebral height. Morselized bone grafting in vertebrae offers immediate spinal stability in patients with thoracolumbar vertebrate fractures, decreases the instrument failure and provides better postoperative pain control than without the morselized bone grafting.
文摘AIM: To evaluate the association between alcoholic liver disease(ALD) and bone fractures or osteoporosis. METHODS: Non-randomized studies were identified from databases(Pub Med, EMBASE, and the Cochrane Library). The search was conducted using Boolean operators and keywords, which included "alcoholic liver diseases", "osteoporosis", or "bone fractures". The prevalence of any fractures or osteoporosis, and bone mineral density(BMD) were extracted and analyzed using risk ratios and standardized mean difference(SMD). A random effects model was applied. RESULTS: In total, 15 studies were identified and analyzed. Overall, ALD demonstrated a RR of 1.944(95%CI: 1.354-2.791) for the development of bone fractures. However, ALD showed a RR of 0.849(95%CI: 0.523-1.380) for the development of osteoporosis. BMD was not significantly different between the ALD and control groups, although there was a trend toward lower BMD in patients with ALD(SMD in femur-BMD:-0.172, 95%CI:-0.453-0.110; SMD in spine-BMD:-0.169, 95%CI:-0.476-0.138). Sensitivity analyses showed consistent results. CONCLUSION: Current publications indicate significant associations between bone fractures and ALD, independent of BMD or the presence of osteoporosis.
文摘Bones are organs of the skeletal system, providing shape, mechanical support, and protection to the body and facilitating the movement. In addition, bones contribute to the mineral homeostasis of the body and have recently been found to participate in endocrine regulation of energy metabolism. The well-known limitations associated with clinical use of autografts and allografts continue to drive efforts to develop bone graft substitutes, using the principles of biomaterials and tissue engineering. Under some stressful and continuous compressive conditions, the ability of the bone tissue to tolerate strength decreases. Whenever these forces overcome the toleration of the bone tissue, bone fracture occurs. years
文摘Biliary atresia(BA) is one of the major hepatobiliary abnormalities in infants and one of the causes of hepatic osteodystrophy.Bone disease may be caused by the malabsorption of calcium and magnesium by vitamin D in hepatobiliary diseases in which bile flow into the intestines is deficient or absent.Bone fracture before Kasai hepatic portoenterostomy or within one month after the procedure in an infant with BA is very rare.We herein report two infants:one infant with BA who initially presented with a bone fracture before Kasai hepatic portoenterostomy,and the other at 4 wk after Kasai hepatic portoenterostomy,and also provide a review of the literature.Moreover,we conclude that clinicians should consider BA in infants with bone fracture during early infancy.
文摘BACKGROUND: Fascia iliaca compartment nerve block(FICNB) has been an established technique for postoperative analgesia after surgery for femoral bone fracture. FICNB is technically easy, effective for postoperative pain control after operation for femoral bone fracture and decreases the complications induced by systemic analgesic drugs. The severity of postoperative pain is affected by genetics, cultural and social factors across the world. In this study we assessed the efficacy of fascia iliaca compartment nerve block when it is used as part of multimodal analgesia after surgery for femoral bone fracture.METHODS: An institution-based case control study was conducted from September, 2013 to May, 2014. All patients who had been operated on under spinal anesthesia for femoral bone fracture were included. The patients divided into a FICNB group(n=20) and a control group(n=20). The FICNB group was given 30 mL of 0.25% bupivacaine at the end of the operation. Postoperative pain was assessed within the f irst 24 hours, i.e. at 15 minutes, 2 hours, 6 hours, 12 hours and 24 hours using 100 mm visual analogue scale(VAS), total analgesic consumption, and the time for the f irst analgesic request.RESULTS: VAS pain scores were reduced within the f irst 24 hours after operation in the FICNB group compared wtih the control group. VAS scores at 2 hours were taken as median values(IQR) 0.00(0.00) vs.18.00(30.00), P=0.001; at 6 hours 0.00(0.00) vs. 34.00(20.75), P=0.000; at 24 hours 12.50(10.00) vs. 31.50(20.75), P=0.004; and at 12 hours(17.80±12.45) vs.(29.95±12.40), P=0.004, respectively. The total analgesic consumption of diclofenac at 12 and 24 hours was reduced in the FICNB group, and the time for the fi rst analgesic request was signifi cantly prolonged(417.50 vs. 139.25 minutes, P=0.000).CONCLUSIONS: A single injection for FICNB could lead to postoperative pain relief, reduction of total analgesic consumption and prolonged time for the fi rst analgesic request in the FICNB group after surgery for femoral bone fracture. We recommend FICNB for analgesia after surgery for femoral bone fracture and for patients with femoral bone fracture at the emergency department.
文摘Osteoporosis represents one major health condition for our growing elderly population. It accounts for severe morbidity and increased mortality in postmenopausal women and it is becoming an emerging health concern even in aging men. Screening of the population at risk for bone degeneration and treatment assessment of osteoporotic patients to prevent bone fragility fractures represent useful tools to improve quality of life in the elderly and to lighten the related socio-economic impact. Bone mineral density(BMD) estimate by means of dual-energy X-ray absorptiometry is normally used in clinical practice for osteoporosis diagnosis. Nevertheless, BMD alone does not represent a good predictor of fracture risk. From a clinical point of view, bone microarchitecture seems to be an intriguing aspect to characterize bone alteration patterns in aging and pathology. The widening into clinical practice of medical imaging techniques and the impressive advances in information technologies together with enhanced capacity of power calculation have promoted proliferation of new methods to assess changes of trabecular bone architecture(TBA) during aging and osteoporosis. Magnetic resonance imaging(MRI) has recently arisen as a useful tool to measure bone structure in vivo. In particular, high-resolution MRI techniques have introduced new perspectives for TBA characterization by non-invasive non-ionizing methods. However, texture analysis methods have not found favor with clinicians as they produce quite a few parameters whose interpretation is difficult. The introduction in biomedical field of paradigms, such as theory of complexity, chaos, and fractals, suggests new approaches and provides innovative tools to develop computerized methods that, by producing a limited number of parameters sensitive to pathology onset and progression, would speed up their application into clinical practice. Complexity of living beings and fractality of several physio-anatomic structures suggest fractal analysis as a promising approach to quantify morphofunctional changes in both aging and pathology. In this particular context, fractal lacunarity seems to be the proper tool to characterize TBA texture as it is able to describe both discontinuity of bone network and sizes of bone marrow spaces, whose changes are an index of bone fracture risk. In this paper, an original method of MRI texture analysis, based on TBA fractal lacunarity is described and discussed in the light of new perspectives for early diagnosis of osteoporotic fractures.
文摘Objective: To investigate the application of artificial tiger bone powder on fracture healing time, wrist functional recovery and quality of life (QOL) in elderly patients with distal radius fracture. Methods: The study was a randomised controlled trials performed from January 2015 to December 2016 in a hospital. Elderly patients with distal radius fracture were divided into the treatment and the control groups by the random sealed envelope method. All patients were given splint or plaster fixation after manipulative reduction, and functional exercise, the treatment group was also given artificial tiger bone powder orally (trade name: Jintiange capsule), the control group was given an oral placebo in their appearance and usage identical with the treatment group. Prior to treatment and 6, 12 months after treatment, the wrist function was assessed by range of motion, including flexion-extension, radial-ulnar and pronation-supination, and the QOL was assessed by the Mos 36-item Short Form Health Survey. Each patient's fracture healing time was recorded. Results: Before treatment, there were no significant differences in wrist function and QOL between the two groups. At 6 and 12 months after treatment, the wrist function and QOL in the treatment group were better than those in the control group, the differences were statistically significant (P < 0.05). The fracture healing time in the treatment group was shorter than that of the control group, and the difference was statistically significant (P < 0.05). Conclusion: The early usage of artificial tiger bone powder for elderly patients with distal radius fracture can promote the healing of fracture, recovery of wrist joint function, and ultimately improve the QOL for elderly patients.
文摘Objective: Analysis of clinical documents such as bone mineral density (BMD) reports is an important component of program evaluation because it can provide insights into the accuracy of assessment of fracture risk communicated to patients and practitioners. Our objective was to compare fracture risk calculations from BMD test reports to those based on the 2010 Canadian guidelines. Methods: We retrieved BMD reports from fragility fracture patients screened through a community hospital fracture clinic participating in Ontario’s Fracture Clinic Screening Program. Fracture risk was determined according to the 2010 Canadian guidelines using age, sex, and T-score at the femoral neck, in addition to three clinical factors. Three researchers classified patients’ fracture risk until consensus was achieved. Results: We retrieved reports for 17 patients from nine different BMD clinics in the Greater Toronto Area. Each patient had a different primary care physician and all BMD tests were conducted after the 2010 Canadian guidelines were published. The fracture risk of 10 patients was misclassified with 9 of the 10 reports underestimating fracture risk. Nine reports acknowledged that the prevalence of a fragility fracture raised the risk category by one level but only four of these reports acknowledged that the patient had, or may have sustained, a fragility fracture. When we raised fracture risk by one level according to these reports, eight patients were still misclassified. Fracture risk in the majority of these patients remained underestimated. Inconsistent classification was found in the majority of cases where reports came from the same clinic. Four reports described risk levels for two different types of risk. Conclusions: More than half of patients received BMD reports which underestimated fracture risk. Bone health management recommendations based on falsely low fracture risk are likely to be sub-optimal.
文摘The risk of fracture is increased in both type 1 diabetes mellitus(T1DM)and type 2 diabetes mellitus(T2DM).However,in contrast to the former,patients with T2DM usually possess higher bone mineral density.Thus,there is a considerable difference in the pathophysiological basis of poor bone health between the two types of diabetes.Impaired bone strength due to poor bone microarchitecture and low bone turnover along with increased risk of fall are among the major factors behind elevated fracture risk.Moreover,some antidiabetic medications further enhance the fragility of the bone.On the other hand,antiosteoporosis medications can affect the glucose homeostasis in these patients.It is also difficult to predict the fracture risk in these patients because conventional tools such as bone mineral density and Fracture Risk Assessment Tool score assessment can underestimate the risk.Evidence-based recommendations for risk evaluation and management of poor bone health in diabetes are sparse in the literature.With the advancement in imaging technology,newer modalities are available to evaluate the bone quality and risk assessment in patients with diabetes.The purpose of this review is to explore the patho-physiology behind poor bone health in diabetic patients.Approach to the fracture risk evaluation in both T1DM and T2DM as well as the pragmatic use and efficacy of the available treatment options have been discussed in depth.
文摘A monoclonal antibody raised against bone morphogenetic protein (BMP-McAb) has been used to demonstrate the presence of bone morphogenetic protein(BMP) in experimental fracture healing. Rabbit mandibles were fractured using standardized methods and left to heal for 3, 7, 14, 21 and 24 d, respectively. The avidin-biotin complex (ABC) method demonstrated an accumulation of positively stained primitive mesenchymal cells at the fracture site in the hematoma stage of bone repair. These cells appeared to undergo differentiation into positively-stained chondroblasts and osteoblasts during the phase of callus formation. Undifferentiated mesenchymal cells showed a high positive reactivity in the early post-fracture stages but a much lower reactivity during the remodelling phase.The results of our study suggest that bone inductive processes are accompanied by the presence of BMP in osteoprogenitor cells during fracture healing of the mandible and that BMP may play a significant role in osteogenesis during bone healing.
文摘Fractures of the lateral process of the talus(FLPT)are uncommon fractures that represent a clinical challenge.Traditional radiological classification systems rely predominantly on radiographic findings.However,due to the high rate of FLPT misdiagnosis and the limited accuracy in evaluating concomitant talar injuries through plain radiographs,novel imaging classification systems have been developed that aim to enhance the diagnosis of concomitant talar injuries,thereby optimizing patient management and reducing the incidence of long-term complications.
基金National Institutes of Health,Nos.R01 NS027713,R01 HL122774 and R21 NS083788the Michael Ryan Zodda Foundation and UCSF Research Evaluation and Allocation Committee(REAC)
文摘Bone fracture occurs in stroke patients at different times during the recovery phase, prolonging recovery time and increasing medical costs. In this review, we discuss the potential risk factors for post-stroke bone fracture and preventive methods. Most post-stroke bone fractures occur in the lower extremities, indicating fragile bones are a risk factor. Motor changes, including posture, mobility, and balance post-stroke contribute to bone loss and thus increase risk of bone fracture. Bone mineral density is a useful indicator for bone resorption, useful to identify patients at risk of post-stroke bone fracture. Calcium supplementation was previously regarded as a useful treatment during physical rehabilitation. However, recent data suggests calcium supplementation has a negative impact on atherosclerotic conditions. Vitamin D intake may prevent osteoporosis and fractures in patients with stroke. Although drugs such as teriparatide show some benefits in preventing osteoporosis, additional clinical trials are needed to determine the most effective conditions for post-stroke applications.
基金supported by the National Natural Science Foundation of China(32130052,82072447,and 82272578)the Fundamental Research Funds for the Central Universities,Nankai University(730-C02922112 and 730-DK2300010314).
文摘With the aging population,intertrochanteric femur fracture in the elderly has become one of the most serious public health issues and a hot topic of research in trauma orthopedics.Due to the limitations of internal fixation techniques and the insufficient mechanical design of nails,the occurrence of complications delays patient recovery after surgical treatment.Design of a proximal femur bionic nail(PFBN)based on Zhang’s N triangle theory provides triangular supporting fixation,which dramatically decreases the occurrence of complications and has been widely used for clinical treatment of unstable intertrochanteric femur fracture worldwide.In this work,we developed an equivalent biomechanical model to analyze improvement in bone remodeling of unstable intertrochanteric femur fracture through PFBN use.The results show that compared with proximal femoral nail antirotation(PFNA)and InterTan,PFBN can dramatically decrease the maximum strain in the proximal femur.Based on Frost’s mechanostat theory,the local mechanical environment in the proximal femur can be regulated into the medium overload region by using a PFBN,which may render the proximal femur in a state of physiological overload,favoring post-operative recovery of intertrochanteric femur fracture in the elderly.This work shows that PFBN may constitute a panacea for unstable intertrochanteric femur fracture and provides insights into improving methods of internal fixation.
文摘BACKGROUND Delayed union,malunion,and nonunion are serious complications in the healing of fractures.Predicting the risk of nonunion before or after surgery is challenging.AIM To compare the most prevalent predictive scores of nonunion used in clinical practice to determine the most accurate score for predicting nonunion.METHODS We collected data from patients with tibial shaft fractures undergoing surgery from January 2016 to December 2020 in three different trauma hospitals.In this retrospective multicenter study,we considered only fractures treated with intramedullary nailing.We calculated the tibia FRACTure prediction healING days(FRACTING)score,Nonunion Risk Determination score,and Leeds-Genoa Nonunion Index(LEG-NUI)score at the time of definitive fixation.RESULTS Of the 130 patients enrolled,89(68.4%)healed within 9 months and were classified as union.The remaining patients(n=41,31.5%)healed after more than 9 months or underwent other surgical procedures and were classified as nonunion.After calculation of the three scores,LEG-NUI and FRACTING were the most accurate at predicting healing.CONCLUSION LEG-NUI and FRACTING showed the best performances by accurately predicting union and nonunion.
文摘Purpose: The Investigational Vertebroplasty Efficacy and Safety Trial (INVEST), a randomized blinded controlled study of Vertebroplasty, demonstrated similar improvements in pain between blinded Vertebroplasty and sham-Vertebroplasty groups. The result from the RCT study suggested that the observed efficacy of the Vertebroplasty procedure, instead of representing the cement-mediated reduction in pain, may relate to the vertebral bone drilling per se. The aim of this study was to demonstrate the effectiveness of pain relief of vertebral bone drilling at the site of painful osteoporotic vertebral compression fractures in the acute phase. Materials and Methods: Twenty-six patients with painful osteoporotic compression fractures underwent the vertebral bone drilling. We assessed primary outcome measures in the NRS pain score and RDQ score at day 0 and 3 following the drilling. Comparisons were made by using Wilcoxon signed rank test. Results: The mean baseline NRS and RDQ score, and the mean NRS and RDQ score at day 3 were 7.3 ± 1.2, 15.7 ± 4.2, 4.6 ± 1.4, 7.3 ± 2.2, respectively. Among the patients, we detected significant improvements in NRS pain score and RDQ score at day 3 following the drilling compared with day 0 (P < 0.001). Conclusion: Vertebral bone drilling at the site of painful vertebral compression fractures alleviated the intractable pain due to osteoporotic vertebral compression fractures.