期刊文献+
共找到118,771篇文章
< 1 2 250 >
每页显示 20 50 100
AAV-mediated expression of p65shRNA and bone morphogenetic protein 4 synergistically enhances chondrocyte regeneration
1
作者 Yu Yangyi Song Zhuoyue +2 位作者 Lian Qiang Ding Kang Li Guangheng 《中国组织工程研究》 CAS 北大核心 2025年第17期3537-3547,共11页
BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene ma... BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair. 展开更多
关键词 OSTEOARTHRITIS adeno-associated virus bone morphogenetic protein 4 p65-short hairpin RNA gene therapy short hairpin RNA transforming growth factor-β1 extracellular matrix articular cartilage chondrocytes.
下载PDF
Icariin accelerates bone regeneration by inducing osteogenesisangiogenesis coupling in rats with type 1 diabetes mellitus 被引量:2
2
作者 Sheng Zheng Guan-Yu Hu +2 位作者 Jun-Hua Li Jia Zheng Yi-Kai Li 《World Journal of Diabetes》 SCIE 2024年第4期769-782,共14页
BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To e... BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To explore the role and potential mechanism of ICA on bone defect in the context of T1DM.METHODS The effects of ICA on osteogenesis and angiogenesis were evaluated by alkaline phosphatase staining,alizarin red S staining,quantitative real-time polymerase chain reaction,Western blot,and immunofluorescence.Angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis.A bone defect model was established in T1DM rats.The model rats were then treated with ICA or placebo and micron-scale computed tomography,histomorphometry,histology,and sequential fluorescent labeling were used to evaluate the effect of ICA on bone formation in the defect area.RESULTS ICA promoted bone marrow mesenchymal stem cell(BMSC)proliferation and osteogenic differentiation.The ICA treated-BMSCs showed higher expression levels of osteogenesis-related markers(alkaline phosphatase and osteocalcin)and angiogenesis-related markers(vascular endothelial growth factor A and platelet endothelial cell adhesion molecule 1)compared to the untreated group.ICA was also found to induce osteogenesis-angiogenesis coupling of BMSCs.In the bone defect model T1DM rats,ICA facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation.Lastly,ICA effectively accelerated the rate of bone formation in the defect area.CONCLUSION ICA was able to accelerate bone regeneration in a T1DM rat model by inducing osteogenesis-angiogenesis coupling of BMSCs. 展开更多
关键词 ICARIIN Osteogenesis-angiogenesis coupling Type 1 diabetes mellitus bone defect bone regeneration
下载PDF
Hydrogel loaded with bone marrow stromal cell-derived exosomes promotes bone regeneration by inhibiting inflammatory responses and angiogenesis 被引量:1
3
作者 Shuai Zhang Chuan Lu +1 位作者 Sheng Zheng Guang Hong 《World Journal of Stem Cells》 SCIE 2024年第5期499-511,共13页
BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,neces... BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,necessitating the search for efficient healing methods.AIM To investigate the underlying mechanism by which hydrogel-loaded exosomes derived from bone marrow mesenchymal stem cells(BMSCs)facilitate the process of fracture healing.METHODS Hydrogels and loaded BMSC-derived exosome(BMSC-exo)gels were charac-terized to validate their properties.In vitro evaluations were conducted to assess the impact of hydrogels on various stages of the healing process.Hydrogels could recruit macrophages and inhibit inflammatory responses,enhance of human umbilical vein endothelial cell angiogenesis,and promote the osteogenic differen-tiation of primary cranial osteoblasts.Furthermore,the effect of hydrogel on fracture healing was confirmed using a mouse fracture model.RESULTS The hydrogel effectively attenuated the inflammatory response during the initial repair stage and subsequently facilitated vascular migration,promoted the formation of large vessels,and enabled functional vascularization during bone repair.These effects were further validated in fracture models.CONCLUSION We successfully fabricated a hydrogel loaded with BMSC-exo that modulates macrophage polarization and angiogenesis to influence bone regeneration. 展开更多
关键词 HYDROGEL bone marrow mesenchymal stem cells Macrophage polarization ANGIOGENESIS bone regeneration
下载PDF
The immunomodulatory effects and mechanisms of magnesium-containing implants in bone regeneration:A review
4
作者 Qiang Sun You Zhou +3 位作者 Aixue Zhang Jibin Wu Lili Tan Shu Guo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2695-2710,共16页
Traditional designs and developments of bone biomaterials mostly concentrate on the positive regulation of osteoblast lineage cells,but often ignore the importance of immune responses and the equilibrium between bone ... Traditional designs and developments of bone biomaterials mostly concentrate on the positive regulation of osteoblast lineage cells,but often ignore the importance of immune responses and the equilibrium between bone resorption mediated by osteoclasts and bone formation mediated by osteoblasts.Immune dysregulation is associated with an imbalance between pro-inflammatory and anti-inflammatory processes,which may influence the efficacy of bone therapy.Therefore,implanted biomaterials should appropriately and precisely modulate subsequent immune responses.Magnesium(Mg)has been used to fabricate various Mg alloys for bone repair because of its favorable attributes such as osteogenic potential,immune regulation characteristics,biodegradability,and biocompatibility.Various basic research and clinical trials have been already conducted in many countries to explore the physical properties of Mg-containing implants and their clinical outcomes in bone fracture and defect repair.Therefore,this review summarizes the immune response to Mg-containing implants,and further organizes the current research and development progress of Mg-containing implants.The review aims to offer an overview of the current knowledge on immunomodulation of Mg-containing implants and future challenges in their clinical application,which could provide further insight in the development of better strategies for the treatment of bone defect and fracture. 展开更多
关键词 MAGNESIUM bone regeneration Immune response BIOMATERIALS Clinical application
下载PDF
Potential plausible role of Wharton’s jelly mesenchymal stem cells for diabetic bone regeneration
5
作者 Sheng Zheng Guan-Yu Hu +1 位作者 Jun-Hua Li Yi-Kai Li 《World Journal of Stem Cells》 SCIE 2024年第8期824-826,共3页
This letter addresses the review titled“Wharton’s jelly mesenchymal stem cells:Future regenerative medicine for clinical applications in mitigation of radiation injury”.The review highlights the regenerative potent... This letter addresses the review titled“Wharton’s jelly mesenchymal stem cells:Future regenerative medicine for clinical applications in mitigation of radiation injury”.The review highlights the regenerative potential of Wharton’s jelly mesenchymal stem cells(WJ-MSCs)and describes why WJ-MSCs will become one of the most probable stem cells for future regenerative medicine.The potential plausible role of WJ-MSCs for diabetic bone regeneration should be noticeable,which will provide a new strategy for improving bone regeneration under diabetic conditions. 展开更多
关键词 Wharton’s jelly mesenchymal stem cells Vascular endothelial growth factor OSTEOGENESIS ANGIOGENESIS Diabetic bone regeneration
下载PDF
Influence of Statins and Fibrates Drugs on Bone Health and Regeneration
6
作者 Octavio Santiago Ivan Nadir Camal Ruggieri +3 位作者 Marina Ribeiro Paulini Valéria Paula Sassoli Fazan João Paulo Mardegan Issa Sara Feldman 《Journal of Biomaterials and Nanobiotechnology》 2024年第1期1-24,共24页
In the medical and dental field, the importance and need for the study of materials and drugs for use as bone grafts or regeneration in injured areas due to the presence of fractures, infections or tumors that cause e... In the medical and dental field, the importance and need for the study of materials and drugs for use as bone grafts or regeneration in injured areas due to the presence of fractures, infections or tumors that cause extensive loss of bone tissue is observed. Bone is a specialized, vascularized and dynamic connective tissue that changes throughout the life of the organism. When injured, it has a unique ability to regenerate and repair without the presence of scars, but in some situations, due to the size of the defect, the bone tissue does not regenerate completely. Thus, due to its importance, there is a great development in therapeutic approaches for the treatment of bone defects through studies that include autografts, allografts and artificial materials used alone or in association with bone grafts. Pharmaceuticals composed of biomaterials and osteogenic active substances have been extensively studied because they provide potential for tissue regeneration and new strategies for the treatment of bone defects. Statins work as specific inhibitors of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMG-CoAreductase). They represent efficient drugs in lowering cholesterol, as they reduce platelet aggregation and thrombus deposition;in addition, they promote angiogenesis, reduce the β-amyloid peptide related to Alzheimer’s disease and suppress the activation of T lymphocytes. Furthermore, these substances have been used in the treatment of hypercholesterolemia and coronary artery disease. By inhibiting HMG-CoAreductase, statins not only inhibit cholesterol synthesis, but also exhibit several other beneficial pleiotropic effects. Therefore, there has been increasing interest in researching the effects of statins, including Simvastatin, on bone and osteometabolic diseases. However, statins in high doses cause inflammation in bone defects and inhibit osteoblastic differentiation, negatively contributing to bone repair. Thus, different types of studies with different concentrations of statins have been studied to positively or negatively correlate this drug with bone regeneration. In this review we will address the positive, negative or neutral effects of statins in relation to bone defects providing a comprehensive understanding of their application. Finally, we will discuss a variety of statin-based drugs and the ideal dose through a theoretical basis with preclinical, clinical and laboratory work in order to promote the repair of bone defects. 展开更多
关键词 bone STATINS ROSUVASTATIN Sinvastatin FIBRATES FENOFIBRATE bone regeneration
下载PDF
Histological Assessment of Bone Regeneration in the Maxilla with Homologous Bone Graft:A Feasible Option for Maxillary Bone Reconstruction
7
作者 Sergio Henrique Gonçalves Motta Ana Paula Ramos Soares +1 位作者 Juliana Campos Hasse Fernandes Gustavo Vicentis Oliveira Fernandes 《Journal of Renewable Materials》 EI CAS 2024年第1期131-148,共18页
Bone biomaterials have been increasingly used to reconstruct maxillary atrophic ridges.Thus,the aim of this study was to evaluate bone reconstruction in the maxilla using a homologous cortico-cancellous FFB(lyophilize... Bone biomaterials have been increasingly used to reconstruct maxillary atrophic ridges.Thus,the aim of this study was to evaluate bone reconstruction in the maxilla using a homologous cortico-cancellous FFB(lyophilized)graft and verify its reliability.Eight individuals were included from 2014 to 2018.The first surgery was performed to install homologous bone blocks in the maxilla.The period of the second intervention varied between 5 months and 15 days to 11 months(≈7.93 months).The biopsies were taken from the central region of the matured graft during the surgery for implant placement.All patients presented clinical and radiographic conditions for the installation of dental implants.There was a 100%of survival rate.The histological assessment showed that the homologous block bone graft was an osteoconductive biomaterial,with connective tissue present,and newly formed bone juxtaposed on its surface.There were bone trabeculae with osteocytes and active osteoblasts with connective tissue in the mineralization process;the remodeling process can be found through the reverse lines.A limited focus of necrosis with fibrosis was detected,with small resorption and areas of inflammatory infiltrate,but without clinical significance.The homologous block bone graft can be considered a feasible option to substitute the autogenous bone graft(gold standard),with predictable clinical and favorable histological results.The patients had a shorter surgical period,low morbidity,and an unlimited amount of biomaterial available at an accessible cost. 展开更多
关键词 regeneration bone graft HISTOLOGY HOMOLOGOUS allogenous AUTOGENOUS
下载PDF
3D-printed Mg-1Ca/polycaprolactone composite scaffolds with promoted bone regeneration
8
作者 Xiao Zhao Siyi Wang +6 位作者 Feilong Wang Yuan Zhu Ranli Gu Fan Yang Yongxiang Xu Dandan Xia Yunsong Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期966-979,共14页
In bone tissue engineering,polycaprolactone(PCL)is a promising material with good biocompatibility,but its poor degradation rate,mechanical strength,and osteogenic properties limit its application.In this study,we dev... In bone tissue engineering,polycaprolactone(PCL)is a promising material with good biocompatibility,but its poor degradation rate,mechanical strength,and osteogenic properties limit its application.In this study,we developed an Mg-1Ca/polycaprolactone(Mg-1Ca/PCL)composite scaffolds to overcome these limitations.We used a melt blending method to prepare Mg-1Ca/PCL composites with Mg-1Ca alloy powder mass ratios of 5,10,and 20 wt%.Porous scaffolds with controlled macro-and microstructure were printed using the fused deposition modeling method.We explored the mechanical strength,biocompatibility,osteogenesis performance,and molecular mechanism of the Mg-1Ca/PCL composites.The 5 and 10 wt%Mg-1Ca/PCL composites were found to have good biocompatibility.Moreover,they promoted the mechanical strength,proliferation,adhesion,and osteogenic differentiation of human bone marrow stem cells(hBMSCs)of pure PCL.In vitro degradation experiments revealed that the composite material stably released Mg_(2)+ions for a long period;it formed an apatite layer on the surface of the scaffold that facilitated cell adhesion and growth.Microcomputed tomography and histological analysis showed that both 5 and 10 wt%Mg-1Ca/PCL composite scaffolds promoted bone regeneration bone defects.Our results indicated that the Wnt/β-catenin pathway was involved in the osteogenic effect.Therefore,Mg-1Ca/PCL composite scaffolds are expected to be a promising bone regeneration material for clinical application.Statement of significance:Bone tissue engineering scaffolds have promising applications in the regeneration of critical-sized bone defects.However,there remain many limitations in the materials and manufacturing methods used to fabricate scaffolds.This study shows that the developed Ma-1Ca/PCL composites provides scaffolds with suitable degradation rates and enhanced boneformation capabilities.Furthermore,the fused deposition modeling method allows precise control of the macroscopic morphology and microscopic porosity of the scaffold.The obtained porous scaffolds can significantly promote the regeneration of bone defects. 展开更多
关键词 3D printing bone tissue engineering MAGNESIUM OSTEOGENIC POLYCAPROLACTONE Scaffold.
下载PDF
Mechanism by which Rab5 promotes regeneration and functional recovery of zebrafish Mauthner axons
9
作者 Jiantao Cui Yueru Shen +2 位作者 Zheng Song Dinggang Fan Bing Hu 《Neural Regeneration Research》 SCIE CAS 2025年第6期1816-1824,共9页
Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles an... Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles and their fusion with the cellular membrane. Rab5 has been reported to play an important role in the development of the zebrafish embryo;however, its role in axonal regeneration in the central nervous system remains unclear. In this study, we established a zebrafish Mauthner cell model of axonal injury using single-cell electroporation and two-photon axotomy techniques. We found that overexpression of Rab5 in single Mauthner cells promoted marked axonal regeneration and increased the number of intra-axonal transport vesicles. In contrast, treatment of zebrafish larvae with the Rab kinase inhibitor CID-1067700markedly inhibited axonal regeneration in Mauthner cells. We also found that Rab5 activated phosphatidylinositol 3-kinase(PI3K) during axonal repair of Mauthner cells and promoted the recovery of zebrafish locomotor function. Additionally, rapamycin, an inhibitor of the mechanistic target of rapamycin downstream of PI3K, markedly hindered axonal regeneration. These findings suggest that Rab5 promotes the axonal regeneration of injured zebrafish Mauthner cells by activating the PI3K signaling pathway. 展开更多
关键词 axonal regeneration Mauthner cell nerve regeneration Rab5 ZEBRAFISH
下载PDF
Human induced pluripotent stem cell-derived therapies for regeneration after central nervous system injury
10
作者 Stephen Vidman Yee Hang Ethan Ma +1 位作者 Nolan Fullenkamp Giles W.Plant 《Neural Regeneration Research》 SCIE CAS 2025年第11期3063-3075,共13页
In recent years,the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine.Considering the non-regenerative nature of the mature central nervous system,the c... In recent years,the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine.Considering the non-regenerative nature of the mature central nervous system,the concept that“blank”cells could be reprogrammed and functionally integrated into host neural networks remained intriguing.Previous work has also demonstrated the ability of such cells to stimulate intrinsic growth programs in post-mitotic cells,such as neurons.While embryonic stem cells demonstrated great potential in treating central nervous system pathologies,ethical and technical concerns remained.These barriers,along with the clear necessity for this type of treatment,ultimately prompted the advent of induced pluripotent stem cells.The advantage of pluripotent cells in central nervous system regeneration is multifaceted,permitting differentiation into neural stem cells,neural progenitor cells,glia,and various neuronal subpopulations.The precise spatiotemporal application of extrinsic growth factors in vitro,in addition to microenvironmental signaling in vivo,influences the efficiency of this directed differentiation.While the pluri-or multipotency of these cells is appealing,it also poses the risk of unregulated differentiation and teratoma formation.Cells of the neuroectodermal lineage,such as neuronal subpopulations and glia,have been explored with varying degrees of success.Although the risk of cancer or teratoma formation is greatly reduced,each subpopulation varies in effectiveness and is influenced by a myriad of factors,such as the timing of the transplant,pathology type,and the ratio of accompanying progenitor cells.Furthermore,successful transplantation requires innovative approaches to develop delivery vectors that can mitigate cell death and support integration.Lastly,host immune responses to allogeneic grafts must be thoroughly characterized and further developed to reduce the need for immunosuppression.Translation to a clinical setting will involve careful consideration when assessing both physiologic and functional outcomes.This review will highlight both successes and challenges faced when using human induced pluripotent stem cell-derived cell transplantation therapies to promote endogenous regeneration. 展开更多
关键词 axon regeneration central nervous system regeneration induced pluripotent stem cells NEUROTRAUMA regenerative medicine spinal cord injury stem cell therapy
下载PDF
A functional tacrolimus-releasing nerve wrap for enhancing nerve regeneration following surgical nerve repair
11
作者 Simeon C.Daeschler Katelyn J.W.So +7 位作者 Konstantin Feinberg Marina Manoraj Jenny Cheung Jennifer Zhang Kaveh Mirmoeini JPaul Santerre Tessa Gordon Gregory HBorschel 《Neural Regeneration Research》 SCIE CAS 2025年第1期291-304,共14页
Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies a... Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies available to promote nerve regeneration.Tacrolimus accelerates axonal regeneration,but systemic side effects presently outweigh its potential benefits for peripheral nerve surgery.The authors describe herein a biodegradable polyurethane-based drug delivery system for the sustained local release of tacrolimus at the nerve repair site,with suitable properties for scalable production and clinical application,aiming to promote nerve regeneration and functional recovery with minimal systemic drug exposure.Tacrolimus is encapsulated into co-axially electrospun polycarbonate-urethane nanofibers to generate an implantable nerve wrap that releases therapeutic doses of bioactive tacrolimus over 31 days.Size and drug loading are adjustable for applications in small and large caliber nerves,and the wrap degrades within 120 days into biocompatible byproducts.Tacrolimus released from the nerve wrap promotes axon elongation in vitro and accelerates nerve regeneration and functional recovery in preclinical nerve repair models while off-target systemic drug exposure is reduced by 80%compared with systemic delivery.Given its surgical suitability and preclinical efficacy and safety,this system may provide a readily translatable approach to support axonal regeneration and recovery in patients undergoing nerve surgery. 展开更多
关键词 BIODEGRADABLE local drug delivery nerve injury nerve regeneration nerve wrap TACROLIMUS
下载PDF
FK506 contributes to peripheral nerve regeneration by inhibiting neuroinflammatory responses and promoting neuron survival
12
作者 Yuhui Kou Zongxue Jin +3 位作者 Yusong Yuan Bo Ma Wenyong Xie Na Han 《Neural Regeneration Research》 SCIE CAS 2025年第7期2108-2115,共8页
FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways ... FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways remain unclear.In this study,we established a rat model of sciatic nerve injury and found that FK506 improved the morphology of the injured sciatic nerve,increased the numbers of motor and sensory neurons,reduced inflammatory responses,markedly improved the conduction function of the injured nerve,and promoted motor function recovery.These findings suggest that FK506 promotes peripheral nerve structure recovery and functional regeneration by reducing the intensity of inflammation after neuronal injury and increasing the number of surviving neurons. 展开更多
关键词 FK506 inflammation motor neurons nerve regeneration NEURON peripheral nerve injury sensory neurons
下载PDF
A novel flexible nerve guidance conduit promotes nerve regeneration while providing excellent mechanical properties
13
作者 Tong Li Quhan Cheng +11 位作者 Jingai Zhang Boxin Liu Yu Shi Haoxue Wang Lijie Huang Su Zhang Ruixin Zhang Song Wang Guangxu Lu Peifu Tang Zhongyang Liu Kai Wang 《Neural Regeneration Research》 SCIE CAS 2025年第7期2084-2094,共11页
Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduit... Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries. 展开更多
关键词 aligned fibers anti-kinking helical fibers nerve guidance conduit nerve regeneration peripheral nerve injury topological guidance
下载PDF
Hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect neurons from cardiac arrest-induced pyroptosis
14
作者 Xiahong Tang Nan Zheng +8 位作者 Qingming Lin Yan You Zheng Gong Yangping Zhuang Jiali Wu Yu Wang Hanlin Huang Jun Ke Feng Chen 《Neural Regeneration Research》 SCIE CAS 2025年第4期1103-1123,共21页
Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to impr... Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to improve migration and survival of bone marrow–derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest,but the specific mechanisms by which hypoxia-preconditioned bone marrow–derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown.To this end,we established an in vitro co-culture model of bone marrow–derived mesenchymal stem cells and oxygen–glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis,possibly through inhibition of the MAPK and nuclear factor κB pathways.Subsequently,we transplanted hypoxia-preconditioned bone marrow–derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia.The results showed that hypoxia-preconditioned bone marrow–derived mesenchymal stem cells significantly reduced cardiac arrest–induced neuronal pyroptosis,oxidative stress,and mitochondrial damage,whereas knockdown of the liver isoform of phosphofructokinase in bone marrow–derived mesenchymal stem cells inhibited these effects.To conclude,hypoxia-preconditioned bone marrow–derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest,and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning. 展开更多
关键词 bone marrow–derived mesenchymal stem cells cardiac arrest cardiac resuscitation hypoxic preconditioning liver isoform of phosphofructokinase mitochondria NEUROINFLAMMATION oxidative stress PYROPTOSIS reactive oxygen species
下载PDF
High mobility group box 1 in the central nervous system:regeneration hidden beneath inflammation
15
作者 Hanki Kim Bum Jun Kim +4 位作者 Seungyon Koh Hyo Jin Cho Xuelian Jin Byung Gon Kim Jun Young Choi 《Neural Regeneration Research》 SCIE CAS 2025年第1期107-115,共9页
High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the ex... High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1. 展开更多
关键词 central nervous system damage-associated molecular pattern ethyl pyruvate glycyrhizzin high mobility group box 1 INFLAMMATION neural stem cells NEURODEVELOPMENT oligodendrocyte progenitor cells redox status regeneration
下载PDF
Comparative study of chitosan/fibroin–hydroxyapatite and collagen membranes for guided bone regeneration in rat calvarial defects: micro-computed tomography analysis 被引量:15
16
作者 Jae Min Song Sang Hun Shin +4 位作者 Yong Deok Kim Jae Yeol Lee Young Jae Baek Sang Yong Yoon Hong Sung Kim 《International Journal of Oral Science》 SCIE CAS CSCD 2014年第2期87-93,共7页
This study aimed to utilize micro-computed tomography (micro-CT) analysis to compare new bone formation in rat calvarial defects using chitosan/fibroin-hydroxyapatite (CFB-HAP) or collagen (Bio-Gide) membranes. ... This study aimed to utilize micro-computed tomography (micro-CT) analysis to compare new bone formation in rat calvarial defects using chitosan/fibroin-hydroxyapatite (CFB-HAP) or collagen (Bio-Gide) membranes. Fifty-four (54) rats were studied. A circular bony defect (8 mm diameter) was formed in the centre of the calvaria using a trephine bur. The CFB-HAP membrane was prepared by thermally induced phase separation. In the experimental group (n= 18), the CFB-HAP membrane was used to cover the bony defect, and in the control group (n= 18), a resorbable collagen membrane (Bio-Gide) was used. In the negative control group (n= 18), no membrane was used. In each group, six animals were euthanized at 2, 4 and 8 weeks after surgery. The specimens were then analysed using micro-CT. There were significant differences in bone volume (BV) and bone mineral density (BMD) (P〈O.05) between the negative control group and the membrane groups. However, there were no significant differences between the CFB-HAP group and the collagen group. We concluded that the CFB-HAP membrane has significant potential as a guided bone regeneration (GBR) membrane. 展开更多
关键词 chitosan/fibroin-hydroxyapatite collagen membrane guided bone regeneration micro-computed tomography rat calva rial defect
下载PDF
In vitro and in vivo evaluations of Mg-Zn-Gd alloy membrane on guided bone regeneration for rabbit calvarial defect 被引量:6
17
作者 Jiawen Si Hongzhou Shen +5 位作者 Hongwei Miao Yuan Tian Hua Huang Jun Shi Guangyin Yuan Guofang Shen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期281-291,共11页
To develop a biodegradable membrane with guided bone regeneration(GBR),a Mg-2.0Zn-1.0Gd alloy(wt.%,MZG)membrane with Ca-P coating was designed and fabricated in this study.The microstructure,hydrophilicity,in vitro de... To develop a biodegradable membrane with guided bone regeneration(GBR),a Mg-2.0Zn-1.0Gd alloy(wt.%,MZG)membrane with Ca-P coating was designed and fabricated in this study.The microstructure,hydrophilicity,in vitro degradation,cytotoxicity,antibacterial effect and in vivo regenerative performance for the membrane with and without Ca-P coating were evaluated.After coating,the membrane exhibited an enhance hydrophilicity and corrosion resistance,showed good in vitro cytocompatibility upon MC3T3E-1 cells,and exhibited excellent antibacterial effect against E.coli,Staphylococcus epidermis and Staphylococcus aureus,simultaneously.In vivo experiment using the rabbit calvarial defect model confirmed that Ca-P coated MZG membrane underwent progressive degradation without inflammatory reaction and significantly improved the new bone formation at both 1.5 and 3 months after the surgery.All the results strongly indicate that MZG with Ca-P coating have great potential for clinical application as GBR membranes. 展开更多
关键词 Magnesium alloy membrane Calcium-phosphate coating ANTIBACTERIAL BIODEGRADABLE Guided bone regeneration
下载PDF
Current and future uses of skeletal stem cells for bone regeneration 被引量:6
18
作者 Guo-Ping Xu Xiang-Feng Zhang +1 位作者 Lu Sun Er-Man Chen 《World Journal of Stem Cells》 SCIE CAS 2020年第5期339-350,共12页
The postnatal skeleton undergoes growth,modeling,and remodeling.The human skeleton is a composite of diverse tissue types,including bone,cartilage,fat,fibroblasts,nerves,blood vessels,and hematopoietic cells.Fracture ... The postnatal skeleton undergoes growth,modeling,and remodeling.The human skeleton is a composite of diverse tissue types,including bone,cartilage,fat,fibroblasts,nerves,blood vessels,and hematopoietic cells.Fracture nonunion and bone defects are among the most challenging clinical problems in orthopedic trauma.The incidence of nonunion or bone defects following fractures is increasing.Stem and progenitor cells mediate homeostasis and regeneration in postnatal tissue,including bone tissue.As multipotent stem cells,skeletal stem cells(SSCs)have a strong effect on the growth,differentiation,and repair of bone regeneration.In recent years,a number of important studies have characterized the hierarchy,differential potential,and bone formation of SSCs.Here,we describe studies on and applications of SSCs and/or mesenchymal stem cells for bone regeneration. 展开更多
关键词 Skeletal stem cell Mesenchymal stem cell bone regeneration PERIOSTEUM bone marrow SKELETON
下载PDF
Preparation and Characterization of Chitosan/β-GP Membranes for Guided Bone Regeneration 被引量:4
19
作者 崔军 徐欣 孙康宁 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第2期242-246,共5页
Bioabsorbable chitosan/β-glycerol phosphate (CS/β-GP) composite membranes were fabricated through a relatively PH neutral and mild sol-gel process for guided bone regeneration (GBR).Their structural properties,m... Bioabsorbable chitosan/β-glycerol phosphate (CS/β-GP) composite membranes were fabricated through a relatively PH neutral and mild sol-gel process for guided bone regeneration (GBR).Their structural properties,morphology,and tensile strength were investigated.FTIR and XRD analyses indicated that there were chemical bonds between the CS andβ-GP.SEM analysis revealed that the CS/β-GP composite membranes had a porous structure both at the surface and in sublayers.Even though the incorporation ofβ-GP in the CS matrix decreased the initial tensile strength of the membrane,the CS/β-GP membranes were still fit for GBR application with their tensile strength of roughly 1MPa.The concentration ofβ-GP was proportional to the pore size and thickness but was inversely proportional to the tensile strength of the CS/β-GP membrane.The present findings indicate that,based on its characteristics,the CS/β-GP composite membrane is a potential bioresorbable membrane for use in guided bone regeneration. 展开更多
关键词 CHITOSAN β-glycerol phosphate guided bone regeneration MEMBRANE thermo-sensitive hydrogel
下载PDF
Improved guided bone regeneration by combined application of unmodified, fresh autologous adipose derived regenerative cells and plasma rich in growth factors:A first-in-human case report and literature review 被引量:4
20
作者 ?nder Solakoglu Werner G?tz +3 位作者 Maren C Kiessling Christopher Alt Christoph Schmitz Eckhard U Alt 《World Journal of Stem Cells》 SCIE CAS 2019年第2期124-146,共23页
BACKGROUND Novel strategies are needed for improving guided bone regeneration(GBR) in oral surgery prior to implant placement, particularly in maxillary sinus augmentation(GBR-MSA) and in lateral alveolar ridge augmen... BACKGROUND Novel strategies are needed for improving guided bone regeneration(GBR) in oral surgery prior to implant placement, particularly in maxillary sinus augmentation(GBR-MSA) and in lateral alveolar ridge augmentation(LRA). This study tested the hypothesis that the combination of freshly isolated, unmodified autologous adipose-derived regenerative cells(UA-ADRCs), fraction 2 of plasma rich in growth factors(PRGF-2) and an osteoinductive scaffold(OIS)(UAADRC/PRGF-2/OIS) is superior to the combination of PRGF-2 and the same OIS alone(PRGF-2/OIS) in GBR-MSA/LRA.CASE SUMMARY A 79-year-old patient was treated with a bilateral external sinus lift procedure as well as a bilateral lateral alveolar ridge augmentation. GBR-MSA/LRA was performed with UA-ADRC/PRGF-2/OIS on the right side, and with PRGF-2/OIS on the left side. Biopsies were collected at 6 wk and 34 wk after GBRMSA/LRA. At the latter time point implants were placed. Radiographs(32 mo follow-up time) demonstrated excellent bone healing. No radiological or histological signs of inflammation were observed. Detailed histologic,histomorphometric, and immunohistochemical analysis of the biopsies evidenced that UA-ADRC/PRGF-2/OIS resulted in better and faster bone regeneration than PRGF-2/OIS.CONCLUSION GBR-MSA with UA-ADRCs, PRGF-2, and an OIS shows effectiveness without adverse effects. 展开更多
关键词 Case report Cell-based therapy Guided bone regeneration Maxillary sinus augmentation Lateral alveolar ridge augmentation Unmodified autologous adipose-derived regenerative cells Stem cells
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部