期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Repair of radius defect with bone-morphogenetic-protein loaded hydroxyapatite/collagen-poly(L-lactic acid) composite 被引量:3
1
作者 胡蕴玉 张超 +2 位作者 吕荣 徐建强 李丹 《Chinese Journal of Traumatology》 CAS 2003年第2期67-74,共8页
Objective: To explore the method to repair bone defect with bone-morphogenetic-protein loaded hydroxyapatite/collagen-poly(L-lactic acid) composite. Methods: 18 adult beagle dogs were randomly divided into 3 groups. I... Objective: To explore the method to repair bone defect with bone-morphogenetic-protein loaded hydroxyapatite/collagen-poly(L-lactic acid) composite. Methods: 18 adult beagle dogs were randomly divided into 3 groups. In Group A, bone-morphogenetic-protein (BMP) loaded hydroxyapatite/collagen-poly(L-lactic acid) (HAC-PLA) scaffold was implanted in a 2 cm diaphyseal defect in the radius. In Group B, unloaded pure HAC-PLA scaffold was implanted in the defects. No material was implanted in Group C (control group). The dogs were sacrificed 6 months postoperatively. Features of biocompatibility, biodegradability and osteoinduction were evaluated with histological, radiological examinations and bone mineral density (BMD) measurements. Results: In Group A, the radius defect healed after the treatment with BMP loaded HAC-PLA. BMD at the site of the defect was higher than that of the contralateral radius. Fibrous union developed in the animals of the control group. Conclusions: BMP not only promotes osteogenesis but also accelerates degradation of the biomaterials. Optimized design parameters of a three-dimensional porous biomaterial would give full scope to the role of BMP as an osteoinductive growth factor. 展开更多
关键词 bone substitute materials poly(L-lactic acid) HYDROXYAPATITE COLLAGEN bone morphogenetic protein
原文传递
Powder metallurgy with space holder for porous titanium implants:A review 被引量:6
2
作者 Alejandra Rodriguez-Contreras Miquel Punset +3 位作者 JoséA.Calero Francisco Javier Gil Elisa Ruperez JoséMaría Manero 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第17期129-149,共21页
One of the biggest challenges in the biocompatibility of implantable metals is the prevention of the stress shielding effect,which is related to the coupling of the bone-metal mechanical properties.This stress shieldi... One of the biggest challenges in the biocompatibility of implantable metals is the prevention of the stress shielding effect,which is related to the coupling of the bone-metal mechanical properties.This stress shielding phenomenon provokes bone resorption and the consequent adverse effects on prosthesis fixation.However,it can be inhibited by adapting the stiffness of the implant material.Since the use of titanium(Ti)porous structures is a great alternative not only to inhibit this effect but also to improve the osteointegration of orthopedic and dental implants,a brief description of the techniques used for their manufacturing and a review of the current commercialized implants produced from porous Ti assemblies are compiled in this work.As powder metallurgy(PM)with space holder(SH)is a powerful technology used to produce porous Ti structures,it is here discussed its potential for the fabrication of medical devices from the perspectives of both design and manufacture.The most important parameters of the technique such as the size and shape of the initial metallic particles,the SH and binder type of materials,the compaction pressure of the green form,and in the sintering stage,the temperature,atmosphere,and time are reviewed according to the bibliography reported.Furthermore,the importance of the porosity and its types together with the influence of the mentioned parameters in the final porosity and,consequently,in the ultimate mechanical properties of the structure are discussed.Finally,a few examples of the PM-SH application for the manufacturing of orthopedic implants are presented. 展开更多
关键词 Powder metallurgy Space holder method Porous titanium structures Medical devices Stress shielding effect Porous materials permeability Interconnected porosity Porous bone substitute materials Open-cell titanium foams Sintering-dissolution technique
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部