Bone-like hydroxyapatite ( HAp ) powders were synthesized using a reverse microemulsion method without further calcine processing. Synthesis conditions had significant effects on the formation of HAp. According to t...Bone-like hydroxyapatite ( HAp ) powders were synthesized using a reverse microemulsion method without further calcine processing. Synthesis conditions had significant effects on the formation of HAp. According to the results of XRD patterns and FFIR spectra, the obtained needle shape HAp powder with poorly crystallized and carbonate substitution was chemically and structurally similar to the human bone powders. The alkaline of emulsion was responsible for the obtained HAp without calcine route, and carbonate came from CO2 in air during preparation. By ultrasonic treatment, the morphology of HAp particles changed from spherical to needle shape for the reverse micelles broke up due to the high energy of ultrasonic.展开更多
Hydroxyapatite(HA)nanoparticles impart outstanding mechanical properties to organicinorganic nanocomposites in bone.Inspired by the composite structure of HA nanoparticles and collagen in bone,a high performance HA/ge...Hydroxyapatite(HA)nanoparticles impart outstanding mechanical properties to organicinorganic nanocomposites in bone.Inspired by the composite structure of HA nanoparticles and collagen in bone,a high performance HA/gelatin nanocomposite was first developed.The nanocomposites have much better mechanical properties(elongation at break 29.9%,tensile strength 90.7 MPa,Young’s modulus 5.24 GPa)than pure gelatin films(elongation at break 9.3%,tensile strength 90.8 MPa,Young’s modulus 2.5 GPa).In addition,the composite films keep a high transmittance in visible wavelength range from 0%to 60%of the HA solid content.These differences in properties are attributed to the homogeneous distribution of HA nanoparticles in the gelatin polymer matrix and the strong interaction between the particle surfaces and the gelatin molecules.This protocol should be promising for HA-based nanocomposites with enhanced mechanical properties for biomedical applications.展开更多
Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and t...Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and the formation of ACP nanospheres in a buffer solution with constant ionic strength.However,the stability of ACP increased with increasing fluoride concentration,which was ascribed to the inhibitory effect of fluoride on the aggregation of ACP nanospheres and the nucleation of nanocrystals on the surface of ACP nanospheres.Furthermore,fluoride could inhibit the lateral growth of HAP nanosheets and promote the formation of rod-like crystals.These results further improve our understanding of the crystallization pathway of HAP crystals and the regulatory effects of fluoride.展开更多
The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal...The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal catalyst and a corrosive homogeneous alkali,we prepared a series of hydroxyapatite catalysts by an ionic liquid-assisted hydrothermal method and evaluated their catalytic performance.The results showed that the ionic liquid[Bmim]BF_(4) can affect the crystal growth of hydroxyapatite,provide fluoride ion for fluorination of hydroxyapatite,and adjust the surface acidity and basicity,morphology,textural properties,crystallinity,and composition of hydroxyapatite.The[Bmim]BF4 dosage and hydrothermal temperature can affect the fluoride ion concentration in the hydrothermal system,thus changing the degree of fluoridation of hydroxyapatite.High fluoride-ion concentration can lead to the formation of CaF_(2) and thus significantly decrease the catalytic performance of hydroxyapatite.The hydrothermal time mainly affects the growth of hydroxyapatite crystals on the c axis,leading to different catalytic performance.The suitable conditions for the preparation of this fluoridized hydroxyapatite are as follows:a mass ratio of[Bmim]BF4 to calcium salt=0.2:1,a hydrothermal time of 12 h,and a hydrothermal temperature of 130℃.A maximal methacrylic acid yield of 54.7%was obtained using the fluoridized hydroxyapatite under relatively mild reaction conditions(250℃ and 2 MPa of N_(2))in the absence of a precious-metal catalyst and a corrosive homogeneous alkali.展开更多
Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_...Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_(3) content,and have not been widely utilized in the synthesis of HA.This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time.This study utilized precipitated calcium carbonate(PCC)derived from crab shells.With a hydrothermal reactor set at 160℃ and varying holding times of 14(HA_14),16(HA_16),and 18(HA_18)h,a PCC and(NH4)2HPO4 mixture was used to synthesize HA.The synthesis results were analyzed using scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)tests.This study has accomplished the synthesis of HA from crab shells.Nonetheless,the final product of synthesis still contained CaCO_(3) as an impurity.The prolonged hydrothermal holding time of 14 to 18 h resulted in a reduction of impurities while increasing the percentage of crystal weight and crystallite size of HA.Specimen CH_18 is the best-quality product generated in this study.This specimen produced HA with the highest percentage of crystal weight and crystallite size compared to the other specimens.Furthermore,specimen CH_18 exhibited the lowest concentration of impurities.The Ca/P ratio in this specimen was also the closest to 1.67.The Ca/P ratio,crystallite size,and crystal weight percentage of this specimen are 1.54,19.06 nm,and 99.1%,respectively.展开更多
A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n cop...A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n copolymer with pendant amine functional groups and enhanced hydrophilicity woo synthesized by bulk ring-opening copolymerization by DL-lactide( DLLA) and glycolide( GA ) with Aspartic acid ( Asp )-Polyethylene glycol(PEG) alt-prepolymer. A Three-dimensional, porous scaffold of the PLGA-( PEG- Asp)n copolymer was fabricated by a solvent casting , particulate leaching process. The scaffold woo then incubated in modified simulated body fluid (naSBF). Growth of HA nanocrystals on the inner pore surfaces of the porous scaffold is confirmed by calcium ion binding analyses, SEM , mass increooe meoourements and quantification of phosphate content within scaffolds. SEM analysis demonstrated the nucleation and growth of a continuous bonelike, low crystalline carbonated HA nanocrystals on the inner pore surfaces of the PLGA- ( PEG-Asp )n scaffolds. The amount of calcium binding, total mass and the mass of phosphate on experimental PLGA- ( PEG-Asp ) n scaffolds at different incubation times in mSBF was significantly greater than that of control PLGA scaffolds. This nano-HA/ PLGA-( PEG- Asp )n composite stunts some features of natural bone both in main composition and hierarchical microstrueture. The Asp- PEG alt-prepolymer modified PleA copolymer provide a controllable high surface density and distribution of anionic functional groups which would enhance nucleation and growth of bonelike mineral following exposure to mSBF. This biomimetic treatment provides a simple method for surface functionalization and sabsequent mineral nucleation and self-oosembling on bodegradable polymer scaffolds for tissue engineering.展开更多
Glass based bone cement (GBC) was synthesized by mixing CaO-SiO2-P2O5 based glass powder with ammonium phosphate liquid medium. Bone-like hydroxyapatite (HAP, Ca10(PO4)6(OH)2) was found to form after GBC was immersed ...Glass based bone cement (GBC) was synthesized by mixing CaO-SiO2-P2O5 based glass powder with ammonium phosphate liquid medium. Bone-like hydroxyapatite (HAP, Ca10(PO4)6(OH)2) was found to form after GBC was immersed in simulated body fluid (SBF). HAP crystal grew with an increasing time along c axle and reached about 200 nm in length after 30 days, however, the end plane granularity remained 30-50 nm. The chemical composition, crystal structure and morphology of HAP formed from GBC were proved to have great resemblance with living HAP. It is believed that GBC was a desirabie biomedicai material with high bioactivity. Furthermore, the high compressive strength guaranteed the possibility of GBC in clinical application.展开更多
Methacrylic acid,an important organic chemical,is commercially manufactured starting from fossil feedstock.The decarboxylation of itaconic acid derived for biomass is a green route to the synthesis of methacrylic acid...Methacrylic acid,an important organic chemical,is commercially manufactured starting from fossil feedstock.The decarboxylation of itaconic acid derived for biomass is a green route to the synthesis of methacrylic acid.In view of the problems existing in the researches on this route such as use of noble metal catalyst,harsh reaction conditions and low desired-product yield,we prepared a series of hydroxyapatite catalysts with different Ca/P molar ratios and evaluated their catalytic performance.The results showed that the hydroxyapatite catalyst with a Ca/P molar ratio of 1.58 had the best catalytic activity.The highest yield of MAA up to 61.2%was achieved with basically complete conversion of itaconic acid under the suitable reaction conditions of 1 equivalent of NaOH,2 MPa of N_(2),250℃,and 2 h.On this basis,a reaction network for the decarboxylation of itaconic acid to methacrylic acid catalyzed by hydroxyapatite was established.With the aid of catalyst characterization using X-ray powder diffraction,NH3/CO2 temperature-programmed desorption,N_(2)physisorption,inductively coupled plasma optical emission spectrometry,and scanning electron microscopy,we found that the distribution of surface acid sites and basic sites,crystal growth orientation,texture properties and morphology of hydroxyapatite varied with the Ca/P molar ratio.Furthermore,the change of the crystal growth orientation and its influence on the surface acidity and alkalinity were clarified.展开更多
Cancerous diseases and diseases resulting from bacteria and fungi are some of the pressures that humans face.Therefore,the development of biomaterials that are resistant to cancerous diseases,bacteria,and fungi has be...Cancerous diseases and diseases resulting from bacteria and fungi are some of the pressures that humans face.Therefore,the development of biomaterials that are resistant to cancerous diseases,bacteria,and fungi has become one of the requirements of the medical field to extend the life of the biomaterial and fight pathogens after implanting these materials inside the human body.One of the important biomaterials used in the field of orthopedics is hydroxyapatite.In this research,Nano substituted hydroxyapatite was prepared by the wet precipitation method,including replacing 5%of the calcium ions with neodymium,cerium,magnesium,and zinc ions in cationic substitution.Many tests were carried out to characterize the prepared material.The biological properties were evaluated by examining the resistance of the substituted hydroxyapatite to bacteria and fungi,in addition to testing the effect of the material on normal cells and bone cancer cells.The results showed a new structure of hydroxyapatite after the substitution process and a significant improvement in the biological properties of the prepared biomaterial compared to other researches.展开更多
Immune adjuvants are immune modulators that have been developed in the context of infectious vaccinations.There is currently a growing interest in immune adjuvants due to the development of immunotherapy against cance...Immune adjuvants are immune modulators that have been developed in the context of infectious vaccinations.There is currently a growing interest in immune adjuvants due to the development of immunotherapy against cancers.Immune adjuvant mechanisms of action are focused on the initiation and amplification of the inflammatory response leading to the innate immune response,followed by the adaptive immune response.The main activity lies in the support of antigen presentation and the maturation and functions of dendritic cells.Most immune adjuvants are associated with a vaccine or incorporated into the new generation of m RNA vaccines.Few immune adjuvants are used as drugs.Hydroxyapatite(HA)ceramics and azoximer bromide(AZB)are overlooked molecules that were used in early clinical trials,which demonstrated clinical efficacy and excellent tolerance profiles.HA combined in an autologous vaccine was previously developed in the veterinary field for use in canine spontaneous lymphomas.AZB,an original immune modulator derived from a class of heterochain aliphatic polyamines that is licensed in Russia,the Commonwealth of Independent States,and Slovakia for infectious and inflammatory diseases,is and now being developed for use in cancer with promising results.These two immune adjuvants can be combined in various immunotherapy strategies.展开更多
In this study, the biocompatible protective coating was formed using plasma electrolytic oxidation(PEO) on bioresorbable Mg-0.8Ca alloy. The composition of the formed coating was studied using XRD, SEM-EDX analysis, a...In this study, the biocompatible protective coating was formed using plasma electrolytic oxidation(PEO) on bioresorbable Mg-0.8Ca alloy. The composition of the formed coating was studied using XRD, SEM-EDX analysis, and micro-Raman spectroscopy. The uniform distribution of hydroxyapatite over the thickness of protective PEO-layer was established. Using traditional(EIS, PDP, OCP) and local scanning electrochemical methods(SVET, SIET with H^(+)-selective microelectrode), the level of protective properties of PEO-layer in a biological environment(mammalian cell culture medium, MEM) was determined. It was established that modification of Mg-0.8Ca alloy surface by PEO contributes to a significant increase in the corrosion resistance of the surface layer, making it possible to control the process of material‘s biodegradation. The maximum local electrochemical activity was recorded after 72 h of testing, while for the uncoated sample,intense corrosion degradation was recorded in the first 12 min of exposure to the cell culture medium. Formation of the PEO-coating results in a twofold decrease in the corrosion current density(2.8·10^(-6)A cm^(-2)) and an increase in the impedance modulus measured at a low frequency(1.7·10^(4)Ω cm^(2)) in comparison with the uncoated material(9.5·10^(-6)A cm^(-2);8.1·10^(3)Ω cm^(2)). The mechanism of material bioresorption was established and a model for biodegradation process of Mg-0.8Ca alloy with hydroxyapatite-containing PEO-coating in MEM was proposed. Analysis of these results and comparing with others obtained by various scientific groups indicate the prospects for application of biocompatible PEO-coating on Mg-Ca alloy in implant surgery.展开更多
Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their suscep...Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their susceptibility to rapid corrosion within the body poses a significant challenge and restricts their applications. To overcome this issue, various surface modification techniques have been developed to enhance the corrosion resistance and bioactivity of Mg-based implants. PEO is a potent technique for producing an oxide film on a surface that significantly minimizes the tendency to corrode. However, the inevitable defects due to discharges and poor biological activity during the coating process remain a concern. Therefore, adding suitable particles during the coating process is a suitable solution. Hydroxyapatite(HAp)has attracted much attention in the development of biomedical applications in the scientific community. HAp shows excellent biocompatibility due to its similarity in chemical composition to the mineral portion of bone. Therefore, its combination with Mg-based implants through PEO has shown significant improvements in their corrosion resistance and bioactivity. This review paper provides a comprehensive overview of the recent advances in the preparation, characterization, corrosion behavior and bioactivity applications of HAp particles on Mg-based implants by PEO.展开更多
Bone is a complex but orderly mineralized tissue with hydroxyapatite(HA)as the inorganic phase and collagen as the organic phase.Inspired by natural bone tissues,HA-mineralized hydrogels have been widely designed and ...Bone is a complex but orderly mineralized tissue with hydroxyapatite(HA)as the inorganic phase and collagen as the organic phase.Inspired by natural bone tissues,HA-mineralized hydrogels have been widely designed and used in bone tissue engineering.HA is majorly utilized for the treatment of bone defects because of its excellent osteoconduction and bone inductivity.Hydrogel is a three-dimensional hydrophilic network structure with similar properties to the extracellular matrix(ECM).The combination of HA and hydrogels produces a new hybrid material that could effectively promote osteointegration and accelerate the healing of bone defects.In this review,the structure and growth of bone and the common strategies used to prepare HA were briefly introduced.Importantly,we discussed the fabrication of HA mineralized hydrogels from simple blending to in situ mineralization.We hope this review can provide a reference for the development of bone repair hydrogels.展开更多
The mesoporous hydroxyapatite (HA) was synthesized by hydrothermal method utilizing cationic surfactant cetyltrimethylammonium bromide (CTAB) as template. The crystalline phase, morphology and porous structure wer...The mesoporous hydroxyapatite (HA) was synthesized by hydrothermal method utilizing cationic surfactant cetyltrimethylammonium bromide (CTAB) as template. The crystalline phase, morphology and porous structure were characterized respectively by different detecting techniques. The results reveal that the particles are highly crystalline hydroxyapatite phase. The surfactant has little influence on the morphology of the crystals, but affects the porous structure obviously. The sample without CTAB has a low surface area not exceeding 33 m^2/g, and no distinct pores can be observed by TEM. While the samples obtained with the surfactant get better parameters. Numerous open-ended pores centered at 2-7 nm spread unequally on the surface of the hydroxyapatite nanorods. The N2 adsorption-desorption experiments show type IV isotherms with distinct hysteresis loops, illustrating the presence of mesoporous structure. When the mole ratio of CTAB to HA is 1:2, the sample has the largest surface area of 97.1 m^2/g and pore volume of 0.466 cm^3/g.展开更多
In order to further improve the transfection efficiency of hydroxyapatite nanoparticle (HAp), arginine functionalized hydroxyapatite (HAp/Arg) was synthesized by hydrothermal synthesis. The morphology, crystallite...In order to further improve the transfection efficiency of hydroxyapatite nanoparticle (HAp), arginine functionalized hydroxyapatite (HAp/Arg) was synthesized by hydrothermal synthesis. The morphology, crystallite size and zeta potential of the HAp/Arg were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and zeta potential analyzer. The loading and protecting properties of HAp/Arg to DNA were tested by electrophoresis. Its cytotoxicity was also measured in Hela cells and HAEC cells by MTT and LDH, and its transfection efficiency was examined by fluorescence microscope and flow cytometry. The results reveal that HAp/Arg is short rod-like and nano single crystal, the mean diameter is 50-90 nm and zeta potential is 35.8 mV at pH 7.4. HAp/Arg to DNA can be condensed by electrostatic effect and protect DNA against degradation in DNase I, and shows high transfection efficiency without cytotoxicity. These results suggest that HAp/Arg can be a promising alternative as a novel gene delivery system.展开更多
The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hyd...The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hydroxyapatite of high crystallinity powder including trace Ca 10 (PO 4) 6CO 3(OH) and Ca 9HPO 4(PO 4) 6OH can be synthesized by mechanical activation without further thermal treatment at a high temperature. The synthesis reaction during the grinding process was almost completed within 1h. The as-ground powder exhibits a particle distribution of 20-100nm in size with a spherical or rodlike morphology. The composition and degree of crystallinity of the mechanochemical synthesized hydroxyapatite powders were coincident with the cement-type hydroxyapatite.展开更多
The arginine-modified and europium-doped hydroxyapatite nanoparticles(HAP-Eu) were synthesized by hydrothermal synthesis.The prepared nanoparticles were characterized by transmission electron microscopy(TEM),X-ray...The arginine-modified and europium-doped hydroxyapatite nanoparticles(HAP-Eu) were synthesized by hydrothermal synthesis.The prepared nanoparticles were characterized by transmission electron microscopy(TEM),X-ray diffractometry(XRD),Fourier transform infrared(FTIR) and zeta potential analyzer.The cell viability of HAP-Eu was tested by image flow cytometry.The results indicated that HAP-Eu is short column shapes and its size is approximately 100 nm,its zeta potential is about 30.10 mV at pH of 7.5,and shows no cytotoxicity in human epithelial cells and endothelial cells.展开更多
Objective:To investigate possible effects of nanophase powder of hydroxyapatite on proliferation of periodontal ligament cells. Methods: With sol-gel method, the nanophase hydroxyapatite powders were fabricated. These...Objective:To investigate possible effects of nanophase powder of hydroxyapatite on proliferation of periodontal ligament cells. Methods: With sol-gel method, the nanophase hydroxyapatite powders were fabricated. These powders were proved nanopaticles by transmission electron microscope. The effects on proliferation of periodontal ligament cell(PDLC) were observed in vitro with MTT [3-(4,5dimethylthiazo;-2-yl)-2,5-diphenytetralium bromide] method. Results: On the 2nd,3rd,4th day after treated with nanoparticles of hydroxyapatite, the proliferate activity of the PDLC increases significantly, compared with those with dense hydroxyaoatite and control but no significant difference could be found between the dense hydroxyapatite and the control. Conclusion: Nanophase hydroxyapatite can promote the regeneration of periodontal tissue.展开更多
Stable and single dispersed HAP nanoparticles were synthesized with chemical method assisted by ultrasonic treatment.HAP nanoparticles were surveyed by AFM and Zataplus.The effect on the Bel-7402 human hepatoma cell ...Stable and single dispersed HAP nanoparticles were synthesized with chemical method assisted by ultrasonic treatment.HAP nanoparticles were surveyed by AFM and Zataplus.The effect on the Bel-7402 human hepatoma cell lines treated with HAP nanoparticles was investigated by the MTT methods and observation of morphology,and the mechanism was studied in changes of cell cycle and ultrastructure.The result shows that inhibition of HAP nanoparticles on the Bel 7402 human hepatoma cell lines is obviously in vitro.HAP nanoparticles the entered cancer cytoplasm,and cell proliferation is stopped at G 1 phase of cell cycle,thus,cancer cells die directly.展开更多
The hydroxyapatite(HA) ceramic coating was successfully prepared on Ti6A14V alloy by the hydrothermal-electrochemical deposition method with constant voltage model. The phases of deposits were analyzed by X-ray diff...The hydroxyapatite(HA) ceramic coating was successfully prepared on Ti6A14V alloy by the hydrothermal-electrochemical deposition method with constant voltage model. The phases of deposits were analyzed by X-ray diffraction. The releationship between crystallinity and depositing temperature was discussed. The microstructures of hydroxyapatite coating were observed by scanning electron microscope. The experimental results showed that the phases, crystaUinity and morphologies of deposits were influenced by depositing temperature (100℃, 120℃, 140℃, 160℃, 180℃ and 200℃, respectively). The special hydrothermal environment can lower the crystallization temperature of HA. The crystallinity of HA increases firstly and then decreases with the increase of temperature. There is little hydroxyapatite deposited on the Ti6A14V surface when the depositing temperature is 100℃. The HA deposition increases with the increase of the depositing temperature. And the HA morphologies are influenced by the depositing temperature.展开更多
文摘Bone-like hydroxyapatite ( HAp ) powders were synthesized using a reverse microemulsion method without further calcine processing. Synthesis conditions had significant effects on the formation of HAp. According to the results of XRD patterns and FFIR spectra, the obtained needle shape HAp powder with poorly crystallized and carbonate substitution was chemically and structurally similar to the human bone powders. The alkaline of emulsion was responsible for the obtained HAp without calcine route, and carbonate came from CO2 in air during preparation. By ultrasonic treatment, the morphology of HAp particles changed from spherical to needle shape for the reverse micelles broke up due to the high energy of ultrasonic.
基金Funded by the Natural Science Foundation of Hubei Province(No.2018CFB710)the Opening Fund of Hubei Provincial Key Laboratory of Green Materials for Light Industry(No.202107B07)Hubei University of Technology。
文摘Hydroxyapatite(HA)nanoparticles impart outstanding mechanical properties to organicinorganic nanocomposites in bone.Inspired by the composite structure of HA nanoparticles and collagen in bone,a high performance HA/gelatin nanocomposite was first developed.The nanocomposites have much better mechanical properties(elongation at break 29.9%,tensile strength 90.7 MPa,Young’s modulus 5.24 GPa)than pure gelatin films(elongation at break 9.3%,tensile strength 90.8 MPa,Young’s modulus 2.5 GPa).In addition,the composite films keep a high transmittance in visible wavelength range from 0%to 60%of the HA solid content.These differences in properties are attributed to the homogeneous distribution of HA nanoparticles in the gelatin polymer matrix and the strong interaction between the particle surfaces and the gelatin molecules.This protocol should be promising for HA-based nanocomposites with enhanced mechanical properties for biomedical applications.
基金Funded by the National Natural Science Foundation of China(No.52172287)the National Key Research and Development Program of China(No.2021YFA0715700)。
文摘Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and the formation of ACP nanospheres in a buffer solution with constant ionic strength.However,the stability of ACP increased with increasing fluoride concentration,which was ascribed to the inhibitory effect of fluoride on the aggregation of ACP nanospheres and the nucleation of nanocrystals on the surface of ACP nanospheres.Furthermore,fluoride could inhibit the lateral growth of HAP nanosheets and promote the formation of rod-like crystals.These results further improve our understanding of the crystallization pathway of HAP crystals and the regulatory effects of fluoride.
基金supported by National Natural Science Foundation of China(21978066)Basic Research Program of Hebei Province for Natural Science Foundation and Key Basic Research Project(18964308D)the Key Program of Natural Science Foundation of Hebei Province(B2020202048).
文摘The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal catalyst and a corrosive homogeneous alkali,we prepared a series of hydroxyapatite catalysts by an ionic liquid-assisted hydrothermal method and evaluated their catalytic performance.The results showed that the ionic liquid[Bmim]BF_(4) can affect the crystal growth of hydroxyapatite,provide fluoride ion for fluorination of hydroxyapatite,and adjust the surface acidity and basicity,morphology,textural properties,crystallinity,and composition of hydroxyapatite.The[Bmim]BF4 dosage and hydrothermal temperature can affect the fluoride ion concentration in the hydrothermal system,thus changing the degree of fluoridation of hydroxyapatite.High fluoride-ion concentration can lead to the formation of CaF_(2) and thus significantly decrease the catalytic performance of hydroxyapatite.The hydrothermal time mainly affects the growth of hydroxyapatite crystals on the c axis,leading to different catalytic performance.The suitable conditions for the preparation of this fluoridized hydroxyapatite are as follows:a mass ratio of[Bmim]BF4 to calcium salt=0.2:1,a hydrothermal time of 12 h,and a hydrothermal temperature of 130℃.A maximal methacrylic acid yield of 54.7%was obtained using the fluoridized hydroxyapatite under relatively mild reaction conditions(250℃ and 2 MPa of N_(2))in the absence of a precious-metal catalyst and a corrosive homogeneous alkali.
基金funded the World Class Research(WCR)Grant of Universitas Diponegoro with Contract Number 357-36/UN7.D2/PP/IV/2024.
文摘Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_(3) content,and have not been widely utilized in the synthesis of HA.This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time.This study utilized precipitated calcium carbonate(PCC)derived from crab shells.With a hydrothermal reactor set at 160℃ and varying holding times of 14(HA_14),16(HA_16),and 18(HA_18)h,a PCC and(NH4)2HPO4 mixture was used to synthesize HA.The synthesis results were analyzed using scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)tests.This study has accomplished the synthesis of HA from crab shells.Nonetheless,the final product of synthesis still contained CaCO_(3) as an impurity.The prolonged hydrothermal holding time of 14 to 18 h resulted in a reduction of impurities while increasing the percentage of crystal weight and crystallite size of HA.Specimen CH_18 is the best-quality product generated in this study.This specimen produced HA with the highest percentage of crystal weight and crystallite size compared to the other specimens.Furthermore,specimen CH_18 exhibited the lowest concentration of impurities.The Ca/P ratio in this specimen was also the closest to 1.67.The Ca/P ratio,crystallite size,and crystal weight percentage of this specimen are 1.54,19.06 nm,and 99.1%,respectively.
文摘A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n copolymer with pendant amine functional groups and enhanced hydrophilicity woo synthesized by bulk ring-opening copolymerization by DL-lactide( DLLA) and glycolide( GA ) with Aspartic acid ( Asp )-Polyethylene glycol(PEG) alt-prepolymer. A Three-dimensional, porous scaffold of the PLGA-( PEG- Asp)n copolymer was fabricated by a solvent casting , particulate leaching process. The scaffold woo then incubated in modified simulated body fluid (naSBF). Growth of HA nanocrystals on the inner pore surfaces of the porous scaffold is confirmed by calcium ion binding analyses, SEM , mass increooe meoourements and quantification of phosphate content within scaffolds. SEM analysis demonstrated the nucleation and growth of a continuous bonelike, low crystalline carbonated HA nanocrystals on the inner pore surfaces of the PLGA- ( PEG-Asp )n scaffolds. The amount of calcium binding, total mass and the mass of phosphate on experimental PLGA- ( PEG-Asp ) n scaffolds at different incubation times in mSBF was significantly greater than that of control PLGA scaffolds. This nano-HA/ PLGA-( PEG- Asp )n composite stunts some features of natural bone both in main composition and hierarchical microstrueture. The Asp- PEG alt-prepolymer modified PleA copolymer provide a controllable high surface density and distribution of anionic functional groups which would enhance nucleation and growth of bonelike mineral following exposure to mSBF. This biomimetic treatment provides a simple method for surface functionalization and sabsequent mineral nucleation and self-oosembling on bodegradable polymer scaffolds for tissue engineering.
基金This work was partially supported by the National Natural Science Foundation of China(grant number 50272041)the Nanotechnology Special Foundation of Shanghai Science and Technology Committee(grant number 0144NM064).
文摘Glass based bone cement (GBC) was synthesized by mixing CaO-SiO2-P2O5 based glass powder with ammonium phosphate liquid medium. Bone-like hydroxyapatite (HAP, Ca10(PO4)6(OH)2) was found to form after GBC was immersed in simulated body fluid (SBF). HAP crystal grew with an increasing time along c axle and reached about 200 nm in length after 30 days, however, the end plane granularity remained 30-50 nm. The chemical composition, crystal structure and morphology of HAP formed from GBC were proved to have great resemblance with living HAP. It is believed that GBC was a desirabie biomedicai material with high bioactivity. Furthermore, the high compressive strength guaranteed the possibility of GBC in clinical application.
基金supported by the National Natural Science Foundation of China(Grant No.21978066)Basic Research Program of Hebei Province for Natural Science Foundation and Key Basic Research Project(Grant No.18964308D)the Key Program of Natural Science Foundation of Hebei Province(Grant No.B2020202048).
文摘Methacrylic acid,an important organic chemical,is commercially manufactured starting from fossil feedstock.The decarboxylation of itaconic acid derived for biomass is a green route to the synthesis of methacrylic acid.In view of the problems existing in the researches on this route such as use of noble metal catalyst,harsh reaction conditions and low desired-product yield,we prepared a series of hydroxyapatite catalysts with different Ca/P molar ratios and evaluated their catalytic performance.The results showed that the hydroxyapatite catalyst with a Ca/P molar ratio of 1.58 had the best catalytic activity.The highest yield of MAA up to 61.2%was achieved with basically complete conversion of itaconic acid under the suitable reaction conditions of 1 equivalent of NaOH,2 MPa of N_(2),250℃,and 2 h.On this basis,a reaction network for the decarboxylation of itaconic acid to methacrylic acid catalyzed by hydroxyapatite was established.With the aid of catalyst characterization using X-ray powder diffraction,NH3/CO2 temperature-programmed desorption,N_(2)physisorption,inductively coupled plasma optical emission spectrometry,and scanning electron microscopy,we found that the distribution of surface acid sites and basic sites,crystal growth orientation,texture properties and morphology of hydroxyapatite varied with the Ca/P molar ratio.Furthermore,the change of the crystal growth orientation and its influence on the surface acidity and alkalinity were clarified.
文摘Cancerous diseases and diseases resulting from bacteria and fungi are some of the pressures that humans face.Therefore,the development of biomaterials that are resistant to cancerous diseases,bacteria,and fungi has become one of the requirements of the medical field to extend the life of the biomaterial and fight pathogens after implanting these materials inside the human body.One of the important biomaterials used in the field of orthopedics is hydroxyapatite.In this research,Nano substituted hydroxyapatite was prepared by the wet precipitation method,including replacing 5%of the calcium ions with neodymium,cerium,magnesium,and zinc ions in cationic substitution.Many tests were carried out to characterize the prepared material.The biological properties were evaluated by examining the resistance of the substituted hydroxyapatite to bacteria and fungi,in addition to testing the effect of the material on normal cells and bone cancer cells.The results showed a new structure of hydroxyapatite after the substitution process and a significant improvement in the biological properties of the prepared biomaterial compared to other researches.
文摘Immune adjuvants are immune modulators that have been developed in the context of infectious vaccinations.There is currently a growing interest in immune adjuvants due to the development of immunotherapy against cancers.Immune adjuvant mechanisms of action are focused on the initiation and amplification of the inflammatory response leading to the innate immune response,followed by the adaptive immune response.The main activity lies in the support of antigen presentation and the maturation and functions of dendritic cells.Most immune adjuvants are associated with a vaccine or incorporated into the new generation of m RNA vaccines.Few immune adjuvants are used as drugs.Hydroxyapatite(HA)ceramics and azoximer bromide(AZB)are overlooked molecules that were used in early clinical trials,which demonstrated clinical efficacy and excellent tolerance profiles.HA combined in an autologous vaccine was previously developed in the veterinary field for use in canine spontaneous lymphomas.AZB,an original immune modulator derived from a class of heterochain aliphatic polyamines that is licensed in Russia,the Commonwealth of Independent States,and Slovakia for infectious and inflammatory diseases,is and now being developed for use in cancer with promising results.These two immune adjuvants can be combined in various immunotherapy strategies.
基金Local electrochemical tests,biocompatible coating formation and modeling the mechanism of the material degradation were supported by the Grant of Russian Science Foundation,Russia (project no.21-73-10148,https://rscf.ru/en/project/ 21-73-10148/)The study of material‘s structure,composition,and kinetics of the corrosion processes using traditional electrochemical methods was supported by the Grant of Russian Science Foundation,Russia (project no.20-13-00130,https://rscf.ru/en/project/20-13-00130/)XRD data were acquired under the government assignments from the Ministry of Science and Higher Education of the Russian Federation,Russia (project no.FWFN(0205)-2022-0003)。
文摘In this study, the biocompatible protective coating was formed using plasma electrolytic oxidation(PEO) on bioresorbable Mg-0.8Ca alloy. The composition of the formed coating was studied using XRD, SEM-EDX analysis, and micro-Raman spectroscopy. The uniform distribution of hydroxyapatite over the thickness of protective PEO-layer was established. Using traditional(EIS, PDP, OCP) and local scanning electrochemical methods(SVET, SIET with H^(+)-selective microelectrode), the level of protective properties of PEO-layer in a biological environment(mammalian cell culture medium, MEM) was determined. It was established that modification of Mg-0.8Ca alloy surface by PEO contributes to a significant increase in the corrosion resistance of the surface layer, making it possible to control the process of material‘s biodegradation. The maximum local electrochemical activity was recorded after 72 h of testing, while for the uncoated sample,intense corrosion degradation was recorded in the first 12 min of exposure to the cell culture medium. Formation of the PEO-coating results in a twofold decrease in the corrosion current density(2.8·10^(-6)A cm^(-2)) and an increase in the impedance modulus measured at a low frequency(1.7·10^(4)Ω cm^(2)) in comparison with the uncoated material(9.5·10^(-6)A cm^(-2);8.1·10^(3)Ω cm^(2)). The mechanism of material bioresorption was established and a model for biodegradation process of Mg-0.8Ca alloy with hydroxyapatite-containing PEO-coating in MEM was proposed. Analysis of these results and comparing with others obtained by various scientific groups indicate the prospects for application of biocompatible PEO-coating on Mg-Ca alloy in implant surgery.
文摘Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their susceptibility to rapid corrosion within the body poses a significant challenge and restricts their applications. To overcome this issue, various surface modification techniques have been developed to enhance the corrosion resistance and bioactivity of Mg-based implants. PEO is a potent technique for producing an oxide film on a surface that significantly minimizes the tendency to corrode. However, the inevitable defects due to discharges and poor biological activity during the coating process remain a concern. Therefore, adding suitable particles during the coating process is a suitable solution. Hydroxyapatite(HAp)has attracted much attention in the development of biomedical applications in the scientific community. HAp shows excellent biocompatibility due to its similarity in chemical composition to the mineral portion of bone. Therefore, its combination with Mg-based implants through PEO has shown significant improvements in their corrosion resistance and bioactivity. This review paper provides a comprehensive overview of the recent advances in the preparation, characterization, corrosion behavior and bioactivity applications of HAp particles on Mg-based implants by PEO.
基金supported by the National Natural Science Foundation of China(Grant no:12272253)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(Grant no:2021SX-AT008,2021SX-AT009).
文摘Bone is a complex but orderly mineralized tissue with hydroxyapatite(HA)as the inorganic phase and collagen as the organic phase.Inspired by natural bone tissues,HA-mineralized hydrogels have been widely designed and used in bone tissue engineering.HA is majorly utilized for the treatment of bone defects because of its excellent osteoconduction and bone inductivity.Hydrogel is a three-dimensional hydrophilic network structure with similar properties to the extracellular matrix(ECM).The combination of HA and hydrogels produces a new hybrid material that could effectively promote osteointegration and accelerate the healing of bone defects.In this review,the structure and growth of bone and the common strategies used to prepare HA were briefly introduced.Importantly,we discussed the fabrication of HA mineralized hydrogels from simple blending to in situ mineralization.We hope this review can provide a reference for the development of bone repair hydrogels.
基金Projects(51102285,81170912)supported by the National Natural Science Foundation of ChinaProject supported by the Open Foundation of State Key Laboratory of Powder Metallurgy,China
文摘The mesoporous hydroxyapatite (HA) was synthesized by hydrothermal method utilizing cationic surfactant cetyltrimethylammonium bromide (CTAB) as template. The crystalline phase, morphology and porous structure were characterized respectively by different detecting techniques. The results reveal that the particles are highly crystalline hydroxyapatite phase. The surfactant has little influence on the morphology of the crystals, but affects the porous structure obviously. The sample without CTAB has a low surface area not exceeding 33 m^2/g, and no distinct pores can be observed by TEM. While the samples obtained with the surfactant get better parameters. Numerous open-ended pores centered at 2-7 nm spread unequally on the surface of the hydroxyapatite nanorods. The N2 adsorption-desorption experiments show type IV isotherms with distinct hysteresis loops, illustrating the presence of mesoporous structure. When the mole ratio of CTAB to HA is 1:2, the sample has the largest surface area of 97.1 m^2/g and pore volume of 0.466 cm^3/g.
基金Project(2013SK2024)supported by the Key Projects in Social Development Pillar Program of Hunan Province,ChinaProject(20130162120094)supported by Specialized Research Fund for the Doctoral Program of Higher Education(SRFDP),Ministry of Education,ChinaProjects(81071869,51305464)supported by the National Natural Science Foundation of China
文摘In order to further improve the transfection efficiency of hydroxyapatite nanoparticle (HAp), arginine functionalized hydroxyapatite (HAp/Arg) was synthesized by hydrothermal synthesis. The morphology, crystallite size and zeta potential of the HAp/Arg were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and zeta potential analyzer. The loading and protecting properties of HAp/Arg to DNA were tested by electrophoresis. Its cytotoxicity was also measured in Hela cells and HAEC cells by MTT and LDH, and its transfection efficiency was examined by fluorescence microscope and flow cytometry. The results reveal that HAp/Arg is short rod-like and nano single crystal, the mean diameter is 50-90 nm and zeta potential is 35.8 mV at pH 7.4. HAp/Arg to DNA can be condensed by electrostatic effect and protect DNA against degradation in DNase I, and shows high transfection efficiency without cytotoxicity. These results suggest that HAp/Arg can be a promising alternative as a novel gene delivery system.
文摘The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hydroxyapatite of high crystallinity powder including trace Ca 10 (PO 4) 6CO 3(OH) and Ca 9HPO 4(PO 4) 6OH can be synthesized by mechanical activation without further thermal treatment at a high temperature. The synthesis reaction during the grinding process was almost completed within 1h. The as-ground powder exhibits a particle distribution of 20-100nm in size with a spherical or rodlike morphology. The composition and degree of crystallinity of the mechanochemical synthesized hydroxyapatite powders were coincident with the cement-type hydroxyapatite.
基金Project (81071869) supported by the National Natural Science Foundation of China Project (2009637526) supported by China Scholarship Council (CSC Program)Project (2010QZZD006) supported by the Key Program of Central South University Advancing Front Foundation
文摘The arginine-modified and europium-doped hydroxyapatite nanoparticles(HAP-Eu) were synthesized by hydrothermal synthesis.The prepared nanoparticles were characterized by transmission electron microscopy(TEM),X-ray diffractometry(XRD),Fourier transform infrared(FTIR) and zeta potential analyzer.The cell viability of HAP-Eu was tested by image flow cytometry.The results indicated that HAP-Eu is short column shapes and its size is approximately 100 nm,its zeta potential is about 30.10 mV at pH of 7.5,and shows no cytotoxicity in human epithelial cells and endothelial cells.
文摘Objective:To investigate possible effects of nanophase powder of hydroxyapatite on proliferation of periodontal ligament cells. Methods: With sol-gel method, the nanophase hydroxyapatite powders were fabricated. These powders were proved nanopaticles by transmission electron microscope. The effects on proliferation of periodontal ligament cell(PDLC) were observed in vitro with MTT [3-(4,5dimethylthiazo;-2-yl)-2,5-diphenytetralium bromide] method. Results: On the 2nd,3rd,4th day after treated with nanoparticles of hydroxyapatite, the proliferate activity of the PDLC increases significantly, compared with those with dense hydroxyaoatite and control but no significant difference could be found between the dense hydroxyapatite and the control. Conclusion: Nanophase hydroxyapatite can promote the regeneration of periodontal tissue.
文摘Stable and single dispersed HAP nanoparticles were synthesized with chemical method assisted by ultrasonic treatment.HAP nanoparticles were surveyed by AFM and Zataplus.The effect on the Bel-7402 human hepatoma cell lines treated with HAP nanoparticles was investigated by the MTT methods and observation of morphology,and the mechanism was studied in changes of cell cycle and ultrastructure.The result shows that inhibition of HAP nanoparticles on the Bel 7402 human hepatoma cell lines is obviously in vitro.HAP nanoparticles the entered cancer cytoplasm,and cell proliferation is stopped at G 1 phase of cell cycle,thus,cancer cells die directly.
基金Funded in Part by the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(2013-KF7)the Research Fund of Science and Technology Commission of Shanghai Municipality(Nos.09ZR1422100,11441900500,11441900501)
文摘The hydroxyapatite(HA) ceramic coating was successfully prepared on Ti6A14V alloy by the hydrothermal-electrochemical deposition method with constant voltage model. The phases of deposits were analyzed by X-ray diffraction. The releationship between crystallinity and depositing temperature was discussed. The microstructures of hydroxyapatite coating were observed by scanning electron microscope. The experimental results showed that the phases, crystaUinity and morphologies of deposits were influenced by depositing temperature (100℃, 120℃, 140℃, 160℃, 180℃ and 200℃, respectively). The special hydrothermal environment can lower the crystallization temperature of HA. The crystallinity of HA increases firstly and then decreases with the increase of temperature. There is little hydroxyapatite deposited on the Ti6A14V surface when the depositing temperature is 100℃. The HA deposition increases with the increase of the depositing temperature. And the HA morphologies are influenced by the depositing temperature.