The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the ...The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.展开更多
在级联H桥多电平静止无功发生器(Static Var Generator,SVG)中,H桥固有的结构特性使得角形级联SVG直流侧电容电压存在二倍频纹波,电压波动影响电能质量补偿效果甚至导致系统失调。为抑制角形级联SVG的H桥直流侧二倍频电压纹波,文中提出...在级联H桥多电平静止无功发生器(Static Var Generator,SVG)中,H桥固有的结构特性使得角形级联SVG直流侧电容电压存在二倍频纹波,电压波动影响电能质量补偿效果甚至导致系统失调。为抑制角形级联SVG的H桥直流侧二倍频电压纹波,文中提出了基于Boost型有源功率解耦(Active Power Decoupling,APD)的角形级联H桥多电平SVG的设计方案。有源功率解耦电路将波动功率和稳定功率相互分离,采用储能元件吸收波动功率,从而削弱了H桥直流侧电压波动。利用MATLAB/Simulink搭建仿真平台进行仿真,结果表明基于Boost型有源功率解耦的角形级联H桥多电平SVG能够有效抑制直流侧电容电压的二倍频纹波。展开更多
Since the decision of the State Council in 1985 on expanding the export of electromechanical products, China’s exports of electrome-chanical products has freed itself from long fluctuation and realized fast growth. A...Since the decision of the State Council in 1985 on expanding the export of electromechanical products, China’s exports of electrome-chanical products has freed itself from long fluctuation and realized fast growth. According to statistics from the Customs Office, China’s exports of electro-mechanical products in 1995 reached US$43.86 billion, increasing 25 times in 10 years, and becoming China’s first pillar products for export. While achieving fast growth in exports, product mix has also seen sig-展开更多
For low-power low total harmonic distortion(THD),based on the CSMC 0.5μm BCD process,a novel boost power factor correction(PFC) converter in critical conduction mode is discussed and analyzed.Feedforward compensa...For low-power low total harmonic distortion(THD),based on the CSMC 0.5μm BCD process,a novel boost power factor correction(PFC) converter in critical conduction mode is discussed and analyzed.Feedforward compensation design is introduced in order to increase the PWM duty cycle and supply more conversion energy near the input voltage zero-crossing points,thus regulating the inductor current of the PFC converter and compensating the system loop gain change with ac line voltage.Both theoretical and practical results reveal that the proposed PFC converter with feedforward compensation cell has better power factor and THD performance,and is suitable for low-power low THD design applications.The experimental THD of the boost PFC converter is 4.5%,the start-up current is 54μA,the stable operating current is 3.85 mA,the power factor is 0.998 and the efficiency is 95.2%.展开更多
文摘The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.
文摘在级联H桥多电平静止无功发生器(Static Var Generator,SVG)中,H桥固有的结构特性使得角形级联SVG直流侧电容电压存在二倍频纹波,电压波动影响电能质量补偿效果甚至导致系统失调。为抑制角形级联SVG的H桥直流侧二倍频电压纹波,文中提出了基于Boost型有源功率解耦(Active Power Decoupling,APD)的角形级联H桥多电平SVG的设计方案。有源功率解耦电路将波动功率和稳定功率相互分离,采用储能元件吸收波动功率,从而削弱了H桥直流侧电压波动。利用MATLAB/Simulink搭建仿真平台进行仿真,结果表明基于Boost型有源功率解耦的角形级联H桥多电平SVG能够有效抑制直流侧电容电压的二倍频纹波。
文摘Since the decision of the State Council in 1985 on expanding the export of electromechanical products, China’s exports of electrome-chanical products has freed itself from long fluctuation and realized fast growth. According to statistics from the Customs Office, China’s exports of electro-mechanical products in 1995 reached US$43.86 billion, increasing 25 times in 10 years, and becoming China’s first pillar products for export. While achieving fast growth in exports, product mix has also seen sig-
基金Project supported by the National High-Tech Program of China(Nos.2009AA01Z258,2009AA01Z260)the National Science & Technology Important Project of China(No.2009ZX01034-002-001-005)
文摘For low-power low total harmonic distortion(THD),based on the CSMC 0.5μm BCD process,a novel boost power factor correction(PFC) converter in critical conduction mode is discussed and analyzed.Feedforward compensation design is introduced in order to increase the PWM duty cycle and supply more conversion energy near the input voltage zero-crossing points,thus regulating the inductor current of the PFC converter and compensating the system loop gain change with ac line voltage.Both theoretical and practical results reveal that the proposed PFC converter with feedforward compensation cell has better power factor and THD performance,and is suitable for low-power low THD design applications.The experimental THD of the boost PFC converter is 4.5%,the start-up current is 54μA,the stable operating current is 3.85 mA,the power factor is 0.998 and the efficiency is 95.2%.