To strengthen border patrol measures, unmanned aerial vehicles(UAVs) are gradually used in many countries to detect illegal entries on borders. However, how to efficiently deploy limited UAVs to patrol on borders of l...To strengthen border patrol measures, unmanned aerial vehicles(UAVs) are gradually used in many countries to detect illegal entries on borders. However, how to efficiently deploy limited UAVs to patrol on borders of large areas remains challenging. In this paper, we first model the problem of deploying UAVs for border patrol as a Stackelberg game. Two players are considered in this game: The border patrol agency is the leader,who optimizes the patrol path of UAVs to detect the illegal immigrant. The illegal immigrant is the follower, who selects a certain area of the border to pass through at a certain time after observing the leader’s strategy. Second, a compact linear programming problem is proposed to tackle the exponential growth of the number of leader’s strategies. Third, a method is proposed to reduce the size of the strategy space of the follower. Then, we provide some theoretic results to present the effect of parameters of the model on leader’s utilities. Experimental results demonstrate the positive effect of limited starting and ending areas of UAV’s patrolling conditions and multiple patrolling altitudes on the leader ’s utility, and show that the proposed solution outperforms two conventional patrol strategies and has strong robustness.展开更多
基金supported by the National Natural Science Foundation of China (71971075,71871079)the National Key Research and Development Program of China (2019YFE0110300)+1 种基金the Anhui Provincial Natural Science Foundation (1808085MG213)the Fundamental R esearch Funds for the Central Universities (PA2019GDPK0082)。
文摘To strengthen border patrol measures, unmanned aerial vehicles(UAVs) are gradually used in many countries to detect illegal entries on borders. However, how to efficiently deploy limited UAVs to patrol on borders of large areas remains challenging. In this paper, we first model the problem of deploying UAVs for border patrol as a Stackelberg game. Two players are considered in this game: The border patrol agency is the leader,who optimizes the patrol path of UAVs to detect the illegal immigrant. The illegal immigrant is the follower, who selects a certain area of the border to pass through at a certain time after observing the leader’s strategy. Second, a compact linear programming problem is proposed to tackle the exponential growth of the number of leader’s strategies. Third, a method is proposed to reduce the size of the strategy space of the follower. Then, we provide some theoretic results to present the effect of parameters of the model on leader’s utilities. Experimental results demonstrate the positive effect of limited starting and ending areas of UAV’s patrolling conditions and multiple patrolling altitudes on the leader ’s utility, and show that the proposed solution outperforms two conventional patrol strategies and has strong robustness.