The purpose of underground methane drainage technology is to prevent methane disasters and enable the efficient use of coal mine methane(CMM),and the sealing depth is a key factor that affects the performance of under...The purpose of underground methane drainage technology is to prevent methane disasters and enable the efficient use of coal mine methane(CMM),and the sealing depth is a key factor that affects the performance of underground methane drainage.In this work,the layouts of in-seam and crossing boreholes are considered to analyze the stress distribution and failure characteristics of roadway surrounding rock through a numerical simulation and field stress investigation to determine a reasonable sealing depth.The results show that the depths of the plastic and elastic zones in two experimental coal mines are 16 and 20 m respectively.Borehole sealing minimizes the air leakage through the fractures around the roadway when the sealing material covers the failure and plastic zones,and the field test results for CMM drainage at different sealing depths indicate that the CMM drainage efficiency increases with increasing sealing depth but does not change once the sealing depth exceeds the plastic zone.Moreover,sealing in the high-permeability roadway surrounding rock does not have a strong influence on the borehole sealing performance.Considering these findings,a new CMM drainage system for key sealing in the low-permeability zone was developed that is effective for improving the CMM drainage efficiency and prolonging the high-concentration CMM drainage period.The proposed approach offers a valuable quantitative analysis method for selecting the optimum sealing parameters for underground methane drainage,thereby improving considerably the drainage and utilization rates of CMM.展开更多
基金This research was supported by the National Natural Science Foundation of China(51974300)the Fundamental Research Funds for the Central Universities(2021YCPY0206 and 2020ZDPY0224)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX21_2467),and as a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘The purpose of underground methane drainage technology is to prevent methane disasters and enable the efficient use of coal mine methane(CMM),and the sealing depth is a key factor that affects the performance of underground methane drainage.In this work,the layouts of in-seam and crossing boreholes are considered to analyze the stress distribution and failure characteristics of roadway surrounding rock through a numerical simulation and field stress investigation to determine a reasonable sealing depth.The results show that the depths of the plastic and elastic zones in two experimental coal mines are 16 and 20 m respectively.Borehole sealing minimizes the air leakage through the fractures around the roadway when the sealing material covers the failure and plastic zones,and the field test results for CMM drainage at different sealing depths indicate that the CMM drainage efficiency increases with increasing sealing depth but does not change once the sealing depth exceeds the plastic zone.Moreover,sealing in the high-permeability roadway surrounding rock does not have a strong influence on the borehole sealing performance.Considering these findings,a new CMM drainage system for key sealing in the low-permeability zone was developed that is effective for improving the CMM drainage efficiency and prolonging the high-concentration CMM drainage period.The proposed approach offers a valuable quantitative analysis method for selecting the optimum sealing parameters for underground methane drainage,thereby improving considerably the drainage and utilization rates of CMM.